Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Radiat Res ; 198(3): 221-242, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834823

RESUMO

The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.


Assuntos
Síndrome Aguda da Radiação , Animais , Modelos Animais de Doenças , Feminino , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Radiação
2.
Radiat Res ; 195(4): 307-323, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577641

RESUMO

Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Filgrastim/farmacologia , Sistema Hematopoético/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/fisiopatologia , Animais , Modelos Animais de Doenças , Sistema Hematopoético/fisiopatologia , Sistema Hematopoético/efeitos da radiação , Humanos , Camundongos , Pediatria , Tolerância a Radiação/efeitos da radiação , Irradiação Corporal Total/efeitos adversos
3.
Radiat Res ; 191(5): 383-397, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30901530

RESUMO

We have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI). The goal of this study was to determine temporal relationships in the development of vasculopathy and the progression of renal and cardiovascular delayed effects of acute radiation exposure (DEARE) at TBI doses less than 9 Gy and to elucidate the potential roles of senescence, inflammation and oxidative stress. Our results show significant loss of endothelial cells in coronary arteries by 4 months post-TBI (8.53 or 8.72 Gy of gamma radiation). This loss precedes renal dysfunction and interstitial fibrosis and progresses to abnormalities in the arterial media and adventitia and loss of coronary arterioles. Major differences in radiation-induced pathobiology exist between the heart and kidney in terms of vasculopathy progression and also in indices of inflammation, senescence and oxidative imbalance. The results of this work suggest a need for different medical countermeasures for multiple targets in different organs and at various times after acute radiation injury to prevent the progression of DEARE.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/patologia , Vasos Sanguíneos/efeitos da radiação , Senescência Celular/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Síndrome Aguda da Radiação/fisiopatologia , Animais , Contagem de Células , Progressão da Doença , Relação Dose-Resposta à Radiação , Feminino , Coração/efeitos da radiação , Inflamação/etiologia , Rim/metabolismo , Rim/patologia , Rim/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Especificidade de Órgãos , Fatores de Tempo , Irradiação Corporal Total/efeitos adversos
4.
Health Phys ; 116(4): 546-557, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30789496

RESUMO

Accurate analyses of the delayed effects of acute radiation exposure in survivors of the hematopoietic acute radiation syndrome are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar hematopoietic acute radiation syndrome studies conducted over a 7-y period in the authors' laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic delayed effects of acute radiation exposure at various times up to 30 mo of age. Significant loss of long-term repopulating potential of phenotypically defined primitive hematopoietic stem cells was documented in hematopoietic acute radiation syndrome survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity, and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSL CD150+; the phenotype known to be enriched for hematopoietic stem cells), and increased cycling of KSL CD150+ cells. Studies interrogating the phenotype of bone marrow cells capable of initiation of suspension cultures and engraftment in competitive transplantation assays documented the phenotype of hematopoietic stem cells in hematopoietic acute radiation syndrome survivors to be the same as that in nonirradiated age-matched controls. This compilation study adds rigor and validity to our initial findings of persistent hematopoietic dysfunction in hematopoietic acute radiation syndrome survivors that arises at the level of the hematopoietic stem cell and which affects all classes of hematopoietic cells for the life of the survivor.


Assuntos
Síndrome Aguda da Radiação/mortalidade , Medula Óssea/efeitos da radiação , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/mortalidade , Síndrome Aguda da Radiação/patologia , Animais , Medula Óssea/patologia , Ciclo Celular/efeitos da radiação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia
5.
Health Phys ; 116(4): 484-502, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681425

RESUMO

Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Biomarcadores/sangue , Cromatografia Líquida , Citocinas/sangue , Feminino , Ensaios de Triagem em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/etiologia , Fatores Sexuais , Espectrometria de Massas em Tandem , Fatores de Tempo , Irradiação Corporal Total
6.
J Toxicol Environ Health A ; 80(23-24): 1349-1368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29165057

RESUMO

Exposure to crystalline silica results in serious adverse health effects, most notably, silicosis. An understanding of the mechanism(s) underlying silica-induced pulmonary toxicity is critical for the intervention and/or prevention of its adverse health effects. Rats were exposed by inhalation to crystalline silica at a concentration of 15 mg/m3, 6 hr/day, 5 days/week for 3, 6 or 12 weeks. Pulmonary toxicity and global gene expression profiles were determined in lungs at the end of each exposure period. Crystalline silica was visible in lungs of rats especially in the 12-week group. Pulmonary toxicity, as evidenced by an increase in lactate dehydrogenase (LDH) activity and albumin content and accumulation of macrophages and neutrophils in the bronchoalveolar lavage (BAL), was seen in animals depending upon silica exposure duration. The most severe histological changes, noted in the 12-week exposure group, consisted of chronic active inflammation, type II pneumocyte hyperplasia, and fibrosis. Microarray analysis of lung gene expression profiles detected significant differential expression of 38, 77, and 99 genes in rats exposed to silica for 3-, 6-, or 12-weeks, respectively, compared to time-matched controls. Among the significantly differentially expressed genes (SDEG), 32 genes were common in all exposure groups. Bioinformatics analysis of the SDEG identified enrichment of functions, networks and canonical pathways related to inflammation, cancer, oxidative stress, fibrosis, and tissue remodeling in response to silica exposure. Collectively, these results provided insights into the molecular mechanisms underlying pulmonary toxicity following sub-chronic inhalation exposure to crystalline silica in rats.


Assuntos
Regulação da Expressão Gênica , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Dióxido de Silício/toxicidade , Células Epiteliais Alveolares/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Fibrose/fisiopatologia , Hiperplasia/fisiopatologia , Inflamação/fisiopatologia , Masculino , Análise em Microsséries , Ratos , Ratos Endogâmicos F344
7.
Inhal Toxicol ; 29(2): 53-64, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28317464

RESUMO

An understanding of the mechanisms underlying diseases is critical for their prevention. Excessive exposure to crystalline silica is a risk factor for silicosis, a potentially fatal pulmonary disease. Male Fischer 344 rats were exposed by inhalation to crystalline silica (15 mg/m3, six hours/day, five days) and pulmonary response was determined at 44 weeks following termination of silica exposure. Additionally, global gene expression profiling in lungs and BAL cells and bioinformatic analysis of the gene expression data were done to understand the molecular mechanisms underlying the progression of pulmonary response to silica. A significant increase in lactate dehydrogenase activity and albumin content in BAL fluid (BALF) suggested silica-induced pulmonary toxicity in the rats. A significant increase in the number of alveolar macrophages and infiltrating neutrophils in the lungs and elevation in monocyte chemoattractant protein-1 (MCP-1) in BALF suggested the induction of pulmonary inflammation in the silica exposed rats. Histological changes in the lungs included granuloma formation, type II pneumocyte hyperplasia, thickening of alveolar septa and positive response to Masson's trichrome stain. Microarray analysis of global gene expression detected 94 and 225 significantly differentially expressed genes in the lungs and BAL cells, respectively. Bioinformatic analysis of the gene expression data identified significant enrichment of several disease and biological function categories and canonical pathways related to pulmonary toxicity, especially inflammation. Taken together, these data suggested the involvement of chronic inflammation as a mechanism underlying the progression of pulmonary response to exposure of rats to crystalline silica at 44 weeks following termination of exposure.


Assuntos
Pulmão/efeitos dos fármacos , Dióxido de Silício/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Perfilação da Expressão Gênica , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Masculino , Ratos , Ratos Endogâmicos F344
8.
Health Phys ; 109(5): 391-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26425900

RESUMO

Manipulations of lethally-irradiated animals, such as for administration of pharmaceuticals, blood sampling, or other laboratory procedures, have the potential to induce stress effects that may negatively affect morbidity and mortality. To investigate this in a murine model of the hematopoietic acute radiation syndrome, 20 individual survival efficacy studies were grouped based on the severity of the administration (Admn) schedules of their medical countermeasure (MCM) into Admn 1 (no injections), Admn 2 (1-3 injections), or Admn 3 (29 injections or 6-9 oral gavages). Radiation doses ranged from LD30/30 to LD95/30. Thirty-day survival of vehicle controls in each group was used to construct radiation dose lethality response relationship (DRR) probit plots, which were compared statistically to the original DRR from which all LDXX/30 for the studies were obtained. The slope of the Admn 3 probit was found to be significantly steeper (5.190) than that of the original DRR (2.842) or Admn 2 (2.009), which were not significantly different. The LD50/30 for Admn 3 (8.43 Gy) was less than that of the original DRR (8.53 Gy, p < 0.050), whereas the LD50/30 of other groups were similar. Kaplan-Meier survival curves showed significantly worse survival of Admn 3 mice compared to the three other groups (p = 0.007). Taken together, these results show that stressful administration schedules of MCM can negatively impact survival and that dosing regimens should be considered when constructing DRR to use in survival studies.


Assuntos
Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Protetores contra Radiação/administração & dosagem , Irradiação Corporal Total/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Feminino , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Doses de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Health Phys ; 109(5): 511-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26425910

RESUMO

The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.


Assuntos
Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/fisiopatologia , Modelos Animais de Doenças , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Irradiação Corporal Total/efeitos adversos , Síndrome Aguda da Radiação/diagnóstico , Animais , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/efeitos da radiação , Doses de Radiação , Fatores de Tempo , Irradiação Corporal Total/métodos
10.
J Appl Toxicol ; 33(11): 1193-202, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23456664

RESUMO

The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article.


Assuntos
Perfilação da Expressão Gênica , RNA , Toxicogenética , Transcriptoma , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/genética , Humanos , RNA/sangue , RNA/genética , Transcriptoma/genética
11.
J Appl Toxicol ; 33(4): 301-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22431001

RESUMO

Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Poluentes Ocupacionais do Ar/toxicidade , Dióxido de Silício/toxicidade , Silicose/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Administração por Inalação , Animais , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Progressão da Doença , Regulação da Expressão Gênica , Masculino , Muco/metabolismo , Tamanho da Partícula , Ratos , Ratos Endogâmicos F344 , Silicose/genética , Silicose/metabolismo , Silicose/patologia , Organismos Livres de Patógenos Específicos , Transportadores de Sulfato
12.
Inhal Toxicol ; 24(9): 570-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22861000

RESUMO

Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m(3), 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity.


Assuntos
Perfilação da Expressão Gênica , Pulmão/efeitos dos fármacos , Quartzo/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Análise em Microsséries , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Ratos , Ratos Endogâmicos F344
13.
Inhal Toxicol ; 23(14): 927-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22087542

RESUMO

A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Quartzo/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Masculino , Análise em Microsséries , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real
14.
Toxicol Sci ; 122(2): 253-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602193

RESUMO

Blood gene expression profiling was investigated as a minimally invasive surrogate approach to detect silica exposure and resulting pulmonary toxicity. Rats were exposed by inhalation to crystalline silica (15 mg/m³, 6 h/day, 5 days), and pulmonary damage and blood gene expression profiles were determined after latency periods (0-16 weeks). Silica exposure resulted in pulmonary toxicity as evidenced by histological and biochemical changes in the lungs. The number of significantly differentially expressed genes in the blood, identified by microarray analysis, correlated with the severity of silica-induced pulmonary toxicity. Functional analysis of the differentially expressed genes identified activation of inflammatory response as the major biological signal. Induction of pulmonary inflammation, as suggested by the blood gene expression data, was supported by significant increases in the number of macrophages and infiltrating neutrophils as well as the activity of pro-inflammatory chemokines observed in the lungs of the silica-exposed rats. A gene expression signature developed using the blood gene expression data predicted the exposure of rats to lower, minimally toxic and nontoxic concentrations of silica. Taken together, our findings suggest the potential application of peripheral blood gene expression profiling as a minimally invasive surrogate approach to detect pulmonary toxicity induced by silica in the rat. However, further research is required to determine the potential application of our findings specifically to monitor human exposure to silica and the resulting pulmonary effects.


Assuntos
Perfilação da Expressão Gênica/métodos , Pulmão/efeitos dos fármacos , Pneumonia/induzido quimicamente , Dióxido de Silício/toxicidade , Administração por Inalação , Animais , Biomarcadores/sangue , Expressão Gênica , Pulmão/patologia , Masculino , Análise em Microsséries , Pneumonia/patologia , RNA Mensageiro/sangue , Ratos , Ratos Endogâmicos F344
15.
Toxicol Sci ; 115(2): 435-43, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20176622

RESUMO

Although ortho-phthalaldehyde (OPA) has been suggested as an alternative to glutaraldehyde for the sterilization and disinfection of hospital equipment, the toxicity has not been thoroughly investigated. The purpose of these studies was to evaluate the irritancy and sensitization potential of OPA. The EpiDerm Skin Irritation Test was used to evaluate in vitro irritancy potential of OPA and glutaraldehyde. Treatment with 0.4125 and 0.55% OPA induced irritation, while glutaraldehyde exposure at these concentrations did not. Consistent with the in vitro results, OPA induced irritancy, evaluated by ear swelling, when mice were treated with 0.75%. Initial evaluation of the sensitization potential was conducted using the local lymph node assay at concentrations ranging from 0.005 to 0.75%. A concentration-dependent increase in lymphocyte proliferation was observed with a calculated EC3 value of 0.051% compared to that of 0.089%, previously determined for glutaraldehyde. Immunoglobulin (Ig) E-inducing potential was evaluated by phenotypic analysis of draining lymph node (DLN) cells and measurement of total and specific serum IgE levels. The 0.1 and 0.75% exposed groups yielded significant increases in the IgE+B220+ cell population in the lymph nodes while the 0.75% treated group demonstrated significant increases in total IgE, OPA-specific IgE, and OPA-specific IgG(1). In addition, significant increases in interleukin-4 messenger RNA and protein expression in the DLNs were observed in OPA-treated groups. The results demonstrate the dermal irritancy and allergic potential of OPA and raise concern about the proposed/intended use of OPA as a safe alternative to glutaraldehyde.


Assuntos
Alérgenos/toxicidade , Dermatite Alérgica de Contato/etiologia , Desinfetantes/toxicidade , Irritantes/toxicidade , o-Ftalaldeído/toxicidade , Administração Tópica , Alérgenos/classificação , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/patologia , Desinfetantes/classificação , Quimioterapia Combinada , Orelha Externa/efeitos dos fármacos , Orelha Externa/patologia , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Feminino , Humanos , Imunoglobulina E/biossíntese , Imunoglobulina E/sangue , Irritantes/classificação , Ensaio Local de Linfonodo , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , o-Ftalaldeído/classificação
16.
Mol Cell Biochem ; 335(1-2): 223-34, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19784758

RESUMO

The purpose of this study was to investigate whether the expression of specific genes in peripheral blood can be used as surrogate marker(s) to detect and distinguish target organ toxicity induced by chemicals in rats. Rats were intraperitoneally administered a single, acute dose of a well-established hepatotoxic (acetaminophen) or a neurotoxic (methyl parathion) chemical. Administration of acetaminophen (AP) in the rats resulted in hepatotoxicity as evidenced from elevated blood transaminase activities. Similarly, administration of methyl parathion (MP) resulted in neurotoxicity in the rats as evidenced from the inhibition of acetyl cholinesterase activity in their blood. Administration of either chemical also resulted in mild hematotoxicity in the rats. Microarray analysis of the global gene expression profile of rat blood identified distinct gene expression markers capable of detecting and distinguishing hepatotoxicity and neurotoxicity induced by AP and MP, respectively. Differential expressions of the marker genes for hepatotoxicity and neurotoxicity were detectable in the blood earlier than the appearance of the commonly used clinical markers (serum transaminases and acetyl cholinesterase). The ability of the marker genes to detect hepatotoxicity and neurotoxicity was further confirmed using the blood samples of rats administered additional hepatotoxic (thioacetamide, dimethylnitrobenzene, and carbon tetrachloride) or neurotoxic (ethyl parathion and malathion) chemicals. In summary, our results demonstrated that blood gene expression markers can detect and distinguish target organ toxicity non-invasively.


Assuntos
Acetaminofen/toxicidade , Biomarcadores/sangue , Perfilação da Expressão Gênica , Expressão Gênica , Metil Paration/toxicidade , Testes de Toxicidade , Animais , Masculino , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA