Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neuroinflammation ; 21(1): 141, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807149

RESUMO

The lectin pathway (LP) of complement mediates inflammatory processes linked to tissue damage and loss of function following traumatic brain injury (TBI). LP activation triggers a cascade of proteolytic events initiated by LP specific enzymes called MASPs (for Mannan-binding lectin Associated Serine Proteases). Elevated serum and brain levels of MASP-2, the effector enzyme of the LP, were previously reported to be associated with the severity of tissue injury and poor outcomes in patients with TBI. To evaluate the therapeutic potential of LP inhibition in TBI, we first conducted a pilot study testing the effect of an inhibitory MASP-2 antibody (α-MASP-2), administered systemically at 4 and 24 h post-TBI in a mouse model of controlled cortical impact (CCI). Treatment with α-MASP-2 reduced sensorimotor and cognitive deficits for up to 5 weeks post-TBI. As previous studies by others postulated a critical role of MASP-1 in LP activation, we conducted an additional study that also assessed treatment with an inhibitory MASP-1 antibody (α-MASP-1). A total of 78 mice were treated intraperitoneally with either α-MASP-2, or α-MASP-1, or an isotype control antibody 4 h and 24 h after TBI or sham injury. An amelioration of the cognitive deficits assessed by Barnes Maze, prespecified as the primary study endpoint, was exclusively observed in the α-MASP-2-treated group. The behavioral data were paralleled by a reduction of the lesion size when evaluated histologically and by reduced systemic LP activity. Our data suggest that inhibition of the LP effector enzyme MASP-2 is a promising treatment strategy to limit neurological deficits and tissue loss following TBI. Our work has translational value because a MASP-2 antibody has already completed multiple late-stage clinical trials in other indications and we used a clinically relevant treatment protocol testing the therapeutic mechanism of MASP-2 inhibition in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Serina Proteases Associadas a Proteína de Ligação a Manose , Camundongos Endogâmicos C57BL , Animais , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/psicologia , Camundongos , Masculino , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
2.
J Infect Dis ; 229(3): 680-690, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37878754

RESUMO

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , SARS-CoV-2/metabolismo , Ativação do Complemento , Modelos Animais de Doenças , Proteínas do Sistema Complemento
3.
J Cereb Blood Flow Metab ; 43(7): 1077-1088, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36823998

RESUMO

Multicentre preclinical randomized controlled trials (pRCTs) are a valuable tool to improve experimental stroke research, but are challenging and therefore underused. A common challenge regards the standardization of procedures across centres. We here present the harmonization phase for the quantification of sensorimotor deficits by composite neuroscore, which was the primary outcome of two multicentre pRCTs assessing remote ischemic conditioning in rodent models of ischemic stroke. Ischemic stroke was induced by middle cerebral artery occlusion for 30, 45 or 60 min in mice and 50, 75 or 100 min in rats, allowing sufficient variability. Eleven animals per species were video recorded during neurobehavioural tasks and evaluated with neuroscore by eight independent raters, remotely and blindly. We aimed at reaching an intraclass correlation coefficient (ICC) ≥0.60 as satisfactory interrater agreement. After a first remote training we obtained ICC = 0.50 for mice and ICC = 0.49 for rats. Errors were identified in animal handling and test execution. After a second remote training, we reached the target interrater agreement for mice (ICC = 0.64) and rats (ICC = 0.69). In conclusion, a multi-step, online harmonization phase proved to be feasible, easy to implement and highly effective to align each centre's behavioral evaluations before project's interventional phase.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Infarto da Artéria Cerebral Média , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA