Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7415, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973986

RESUMO

A charge-current-induced shift in the spin-locked Fermi surface leads to a non-equilibrium spin density at a Rashba interface, commonly known as the Rashba-Edelstein effect. Since this is an intrinsically interfacial property, direct detection of the spin moment is difficult. Here we demonstrate that a planar Josephson Junction, realized by placing two closely spaced superconducting electrodes over a Rashba interface, allows for a direct detection of the spin moment as an additional phase in the junction. Asymmetric Fraunhofer patterns obtained for Nb-(Pt/Cu)-Nb nano-junctions, due to the locking of Rashba-Edelstein spin moment to the flux quantum in the junction, provide clear signatures of this effect. This simple experiment offers a fresh perspective on direct detection of spin polarization induced by various spin-orbit effects. In addition, this platform also offers a magnetic-field-controlled phase biasing mechanism in conjunction with the Rashba-Edelstein spin-orbit effect for superconducting quantum circuits.

2.
Phys Chem Chem Phys ; 24(7): 4415-4424, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113109

RESUMO

The thin films of Ni and Bi are known to form NiBi3 and NiBi compounds spontaneously at the interface, which become superconducting below 4.2 K and show ferromagnetism either intrinsically or due to Ni impurities. Formation of NiBi3 and NiBi is a slow diffusion reaction, which means the local environment around Ni and Bi atoms may vary with time and temperature. In this report, we assess the feasibility of using X-ray Absorption Spectroscopy (XAS) as a tool to track the changes in local bonding environment in NiBi3 and NiBi. Thermal annealing at temperatures up to 500 °C was used to induce changes in the local environment in NiBi3 system. Consequent decomposition of NiBi3 into NiO and Bi has been tracked through changes in structural and magnetization behavior, which matched well with the findings of XAS. In addition, the magnetic hysteresis measurements indicated that NiO should be the dominant phase when NiBi3 is annealed at 500 °C. This was corroborated from XAS and was found to be >90%. The shift in K-edge of Ni in annealed samples was attributed to increasing charge state on Ni atom, which was ascertained by Bader charge analysis using Density Functional Theory (DFT). This study correlating macroscopic properties of NiBi3 with local bonding environment of the system indicates that XAS can be a very reliable tool for studying dynamics of diffusion in the NiBi3 system.

3.
J Phys Condens Matter ; 33(29)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975294

RESUMO

Scattering of spin-up and spin-down electrons while passing through a ferromagnetic domain wall (DW) leads to an additional resistance for transport current, usually observed prominently in constricted magnetic structures. In this report we use the resistance of the DW as a probe to find an indirect signatures of the theoretically predicted spin-singlet supercurrent to spin-triplet supercurrent conversion effect of ferromagnetic DWs. Here we examine the DW induced resistance in Ni stripe in a bilayer Ni/Nb geometry in the normal state and in the superconducting state of Nb. By making a 3µm wide gap in the top Nb layer we routed the transport current through the Ni layer in the normal state and in the superconducting state of Nb. In the normal state of Nb, in-field transport measurements showed a clear domain wall magneto-resistance (DWMR) peak of amplitude ∼5.9 mΩ near the coercive field, where the DW density is expected to be maximum. Interestingly, however, below the superconducting transition temperature of Nb, the DWMR peak of the Ni layer showed a sharp drop in the field range where the number of DWs become maximum. This observation may be a possible signature of magnetic DW induced spin-triplet correlations in the Ni layer due to the direct injection of spin-singlet Cooper pairs from Nb into the magnetic DWs.

4.
Nano Lett ; 21(7): 3092-3097, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33724857

RESUMO

Spin-singlet Cooper pairs convert to spin-triplet Cooper pairs on passing through a magnetically noncollinear structure at a superconductor(S)/ferromagnet(F) interface. In this context, the generation of triplet supercurrents through intrinsic ferromagnetic domain walls, which are naturally occurring noncollinear magnetic features, was proposed theoretically in the past decade. However, an experimental demonstration has been lacking in the literature, particularly because of the difficulty in accessing a single domain wall, which is typically buried between two domains in a ferromagnetic material. By patterning a ferromagnetic nanoconstriction, we have been able to realize a nanoscale S/F/S planar junction, where a single domain wall (pinned at the nanoconstriction) acts as a Josephson barrier. In this geometry, we are able to show the predicted long-range triplet supercurrent across a ferromagnetic barrier exceeding 70 nm. Using this technique, we have demonstrated a ferromagnetic planar nano-SQUID device consisting of two Nb/Ni/Nb spin-triplet Josephson junctions.

5.
J Phys Condens Matter ; 29(48): 485708, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28975897

RESUMO

We present a detailed study of thermal and electrical transport behavior of single crystal titanium disulphide flakes, which belong to the two dimensional, transition metal dichalcogenide class of materials. In-plane Seebeck effect measurements revealed a typical metal-like linear temperature dependence in the range of 85-285 K. Electrical transport measurements with in-plane current geometry exhibited a nearly T 2 dependence of resistivity in the range of 42-300 K. However, transport measurements along the out-of-plane current geometry showed a transition in temperature dependence of resistivity from T 2 to T 5 beyond 200 K. Interestingly, Au ion-irradiated TiS2 samples showed a similar T 5 dependence of resistivity beyond 200 K, even in the current-in-plane geometry. Micro-Raman measurements were performed to study the phonon modes in both pristine and ion-irradiated TiS2 crystals.

6.
Phys Chem Chem Phys ; 19(21): 14012-14019, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28517010

RESUMO

We report the synthesis of a unique zinc oxide nanorod structure in which an amorphous ZnO layer is sandwiched between two identical crystalline segments of ZnO. A simple hydrothermal reaction method was used for this purpose, which allowed us to tune the amorphous and crystalline sections of the nanorods via reaction temperature. A systematic study of the morphology and dimensions of the nanorods grown under various conditions was performed using a combination of scanning and transmission electron microscopy. Transmission electron microscopy (TEM) clearly showed an amorphous separation between the two crystalline segments. UV-vis absorption spectroscopy of the twin nanorods (TNRs) showed a redshift in the optical band gap as a function of the growth duration, indicating slightly stressed growth of the crystalline segments. For a longer growth duration, as the amorphous gap starts to get bridged by crystalline growth, redshift in optical band gap becomes constant. This confirms a true mechanical gap between the two crystalline segments of the nanorods. Temperature dependent photoluminescence (PL) spectra of the TNRs showed a variation in free exciton (FX) emission energy, which fitted very well to a model incorporating lattice dilation in addition to the standard electron-phonon interactions. At low temperatures (below ∼180 K) we observed the appearance of visible emission peaks due to localization of defect levels. A loss in the near band edge emission intensity was observed at low temperatures, commensurate with the appearance of defect emission in the visible range.

7.
Phys Chem Chem Phys ; 17(6): 4277-82, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25572135

RESUMO

Zinc oxide twin nanorods, with two identical crystalline sections connected by an amorphous layer, were reproducibly grown using a simple one-step hydrothermal technique. The thickness of the amorphous layer between the crystalline segments was tunable with growth parameters, as confirmed by high resolution transmission electron microscopy. The photoluminescence spectra of these twin nanorods exhibit strong near band edge emission in the UV range, with convoluted phonon sidebands. De-convolution analyses of these spectra showed that the amorphous interlayers act as effective phonon barriers beyond a certain thickness. Such oriented grown individual crystalline-amorphous-crystalline structures may be a suitable test system for fundamental studies of phonon tunneling in the nanostructure. While physical vapor deposition techniques are seriously constrained in realizing crystalline-amorphous-crystalline structures, our results show the viability of engineering embedded interfaces via chemical routes.

8.
Nat Mater ; 10(11): 849-52, 2011 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-21909111

RESUMO

Josephson junctions with ferromagnetic barriers have been intensively investigated in recent years. Of particular interest has been the realization of so called π-junctions with a built-in phase difference, and induced triplet pairing. Such experiments have so far been limited to systems containing metallic ferromagnets. Although junctions incorporating a ferromagnetic insulator (I(F)) have been predicted to show a range of unique properties including π-shifts with intrinsically low dissipation and an unconventional temperature dependence of the critical current I(c), difficulties with the few known I(F) materials have prevented experimental tests. Here we report supercurrents through magnetic GdN barriers and show that the field and temperature dependence of I(c)is strongly modified by the I(F). In particular we show that the strong suppression of Cooper pair tunnelling by the spin filtering of the I(F) barrier can be modified by magnetic inhomogeneity in the barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA