Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Int J Sport Nutr Exerc Metab ; 34(4): 189-198, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604602

RESUMO

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.


Assuntos
Colágeno , Estudos Cross-Over , Glicina , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Masculino , Adulto , Glicina/sangue , Glicina/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Período Pós-Prandial , Exercício Físico/fisiologia , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Aminoácidos/sangue , Aminoácidos/administração & dosagem , Músculo Esquelético/metabolismo
2.
J Physiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411283

RESUMO

We measured the impact of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Twelve healthy, male adults (age: 24 ± 3 years, body mass index: 23.7 ± 3.1 kg/m2 ) were subjected to 14 days of strict bed rest with unilateral blood flow restriction performed three times daily in three 5 min cycles (200 mmHg). Participants consumed deuterium oxide and we collected blood and saliva samples throughout 2 weeks of bed rest. Before and immediately after bed rest, lean body mass (dual-energy X-ray absorptiometry scan) and thigh muscle volume (magnetic resonance imaging scan) were assessed in both the blood flow restricted (BFR) and control (CON) leg. Muscle biopsies were collected and unilateral muscle strength (one-repetition maximum; 1RM) was assessed for both legs before and after the bed rest period. Bed rest resulted in 1.8 ± 1.0 kg lean body mass loss (P < 0.001). Thigh muscle volume declined from 7.1 ± 1.1 to 6.7 ± 1.0 L in CON and from 7.0 ± 1.1 to 6.7 ± 1.0 L in BFR (P < 0.001), with no differences between treatments (P = 0.497). In addition, 1RM leg extension strength decreased from 60.2 ± 10.6 to 54.8 ± 10.9 kg in CON and from 59.2 ± 12.1 to 52.9 ± 12.0 kg in BFR (P = 0.014), with no differences between treatments (P = 0.594). Muscle protein synthesis rates during bed rest did not differ between the BFR and CON leg (1.11 ± 0.12 vs. 1.08 ± 0.13%/day, respectively; P = 0.302). Two weeks of bed rest substantially reduces skeletal muscle mass and strength. Blood flow restriction during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. KEY POINTS: Bed rest, often necessary for recovery from illness or injury, leads to the loss of muscle mass and strength. It has been postulated that blood flow restriction may attenuate the loss of muscle mass and strength during bed rest. We investigated the effect of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Blood flow restriction applied during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. Blood flow restriction is not effective in preventing muscle atrophy during a prolonged period of bed rest.

3.
Med Sci Sports Exerc ; 56(4): 635-643, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079310

RESUMO

INTRODUCTION: Physical activity level has been identified as an important factor in the development and progression of various types of cancer. In this study, we determined the impact of a low versus high physical activity level on skeletal muscle, healthy prostate, and prostate tumor protein synthesis rates in vivo in prostate cancer patients. METHODS: Thirty prostate cancer patients (age, 66 ± 5 yr; body mass index, 27.4 ± 2.9 kg·m -2 ) were randomized to a low (<4000 steps per day, n = 15) or high (>14,000 steps per day, n = 15) physical activity level for 7 d before their scheduled radical prostatectomy. Daily deuterium oxide administration was combined with the collection of plasma, skeletal muscle, nontumorous prostate, and prostate tumor tissue during the surgical procedure to determine tissue protein synthesis rates throughout the intervention period. RESULTS: Daily step counts averaged 3610 ± 878 and 17,589 ± 4680 steps in patients subjected to the low and high physical activity levels, respectively ( P < 0.001). No differences were observed between tissue protein synthesis rates of skeletal muscle, healthy prostate, or prostate tumor between the low (1.47% ± 0.21%, 2.74% ± 0.70%, and 4.76% ± 1.23% per day, respectively) and high (1.42% ± 0.16%, 2.64% ± 0.58%, and 4.72% ± 0.80% per day, respectively) physical activity group (all P > 0.4). Tissue protein synthesis rates were nearly twofold higher in prostate tumor compared with nontumorous prostate tissue. CONCLUSIONS: A short-term high or low physical activity level does not modulate prostate or prostate tumor protein synthesis rates in vivo in prostate cancer patients. More studies on the impact of physical activity level on tumor protein synthesis rates and tumor progression are warranted to understand the potential impact of lifestyle interventions in the prevention and treatment of cancer.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Neoplasias da Próstata/terapia , Prostatectomia/métodos , Índice de Massa Corporal , Exercício Físico
4.
Med Sci Sports Exerc ; 56(4): 612-622, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994085

RESUMO

PURPOSE: Short periods of limb immobilization lower myofibrillar protein synthesis rates. Within skeletal muscle, the extracellular matrix of connective proteins is recognized as an important factor determining the capacity to transmit contractile force. Little is known regarding the impact of immobilization and subsequent recovery on muscle connective protein synthesis rates. This study examined the impact of 1 wk of leg immobilization and 2 wk of subsequent ambulant recovery on daily muscle connective protein synthesis rates. METHODS: Thirty healthy, young (24 ± 5 yr) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Deuterium oxide ingestion was applied over the entire period, and muscle biopsy samples were collected before immobilization, after immobilization, and after recovery to measure muscle connective protein synthesis rates and mRNA expression of key extracellular matrix proteins (collagen I, collagen III), glycoproteins (fibronectin, tenascin-C), and proteoglycans (fibromodulin, and decorin). A two-way repeated-measures (time-leg) ANOVA was used to compare changes in muscle connective protein synthesis rates during immobilization and recovery. RESULTS: During immobilization, muscle connective protein synthesis rates were lower in the immobilized (1.07 ± 0.30%·d -1 ) compared with the nonimmobilized (1.48 ± 0.44%·d -1 ; P < 0.01) leg. When compared with the immobilization period, connective protein synthesis rates in the immobilized leg increased during subsequent recovery (1.48 ± 0.64%·d -1 ; P < 0.01). After recovery, skeletal muscle collagen I, collagen III, fibronectin, fibromodulin, and decorin mRNA expression increased when compared with the postimmobilization time point (all P < 0.001). CONCLUSIONS: One week of leg immobilization lowers muscle connective protein synthesis rates. Muscle connective protein synthesis rates increase during subsequent ambulant recovery, which is accompanied by increased mRNA expression of key extracellular matrix proteins.


Assuntos
Fibronectinas , Perna (Membro) , Masculino , Humanos , Adulto Jovem , Fibromodulina/metabolismo , Decorina , Músculo Esquelético/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Colágeno Tipo I , RNA Mensageiro/metabolismo
5.
J Nutr ; 154(2): 554-564, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103646

RESUMO

BACKGROUND: Protein digestion and amino acid absorption appear compromised in critical illness. The provision of enteral feeds with free amino acids rather than intact protein may improve postprandial amino acid availability. OBJECTIVE: Our objective was to quantify the uptake of diet-derived phenylalanine after the enteral administration of intact protein compared with an equivalent amount of free amino acids in critically ill patients. METHODS: Sixteen patients who were mechanically ventilated in intensive care unit (ICU) at risk of malabsorption received a primed continuous infusion of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine after an overnight fast. Patients were randomly allocated to receive 20 g intrinsically L-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of amino acids labeled with free L-[1-13C]-phenylalanine via a nasogastric tube over a 2-h period. Protein digestion and amino acid absorption kinetics and whole-body protein net balance were assessed throughout a 6-h period. RESULTS: After enteral nutrient infusion, both plasma phenylalanine and leucine concentrations increased (P-time < 0.001), with a more rapid and greater rise after free amino acid compared with intact protein administration (P-time × treatment = 0.003). Diet-derived phenylalanine released into the circulation was 25% greater after free amino acids compared with intact protein administration [68.7% (confidence interval {CI}: 62.3, 75.1%) compared with 43.8% (CI: 32.4, 55.2%), respectively; P < 0.001]. Whole-body protein net balance became positive after nutrient administration (P-time < 0.001) and tended to be more positive after free amino acid in provision (P-time × treatment = 0.07). CONCLUSIONS: The administration of free amino acids as opposed to intact protein further increases postprandial plasma amino acid availability in critically ill patients, allowing more diet-derived phenylalanine to become available to peripheral tissues. This trial was registered at clinicaltrials.gov as NCT04791774.


Assuntos
Aminoácidos , Estado Terminal , Humanos , Estado Terminal/terapia , Proteínas Alimentares , Proteínas Musculares/metabolismo , Fenilalanina , Período Pós-Prandial
6.
Cell Rep Med ; 4(12): 101324, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118410

RESUMO

The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.


Assuntos
Aminoácidos , Recuperação após o Exercício , Humanos , Músculo Esquelético/metabolismo , Ingestão de Alimentos/fisiologia , Proteínas de Ligação ao GTP/metabolismo
7.
J Nutr ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972895

RESUMO

BACKGROUND: Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS: In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS: MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS: Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.

8.
Int J Sport Nutr Exerc Metab ; 33(5): 247-254, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348850

RESUMO

Dietary protein digestion and amino acid absorption rates are modulated by numerous factors such as the food matrix. It has been speculated that protein ingested in liquid form is more rapidly digested and absorbed when compared with ingestion in solid form. Here, we assessed the postprandial plasma amino acid availability following ingestion of a single bolus of protein provided in either liquid or solid form. Twelve healthy, young females were included in this randomized cross-over study. On two separate test days, participants ingested 20-g milk protein concentrate in solid form (protein bar) or in liquid form (protein drink). Products were composed of matched ingredients and, thereby, had the same macro- and micronutrient composition. On both test days, arterialized blood samples were collected at regular time intervals for up to 4 hr following protein ingestion to assess the postprandial rise in plasma amino acid concentrations. Protein ingestion robustly elevated circulating plasma amino acid concentrations (p < .001), with no significant differences between treatments (p = .088). The incremental area under the curve of the postprandial rise in total plasma amino acid concentrations did not differ following bar versus drink consumption (160 ± 73 vs. 160 ± 71 mmol·L-1·240 min-1, respectively; 95% confidence interval [-37, 37]; Cohen's dz = 0.003; p = .992). Ingestion of protein in liquid or solid form does not modulate postprandial amino acid availability in healthy, female adults. Any differences in protein digestion and amino acid absorption due to differences in food matrix are not attributed to the protein being consumed as a bar or as a drink.


Assuntos
Proteínas do Leite , Proteínas Musculares , Humanos , Adulto , Feminino , Proteínas Musculares/metabolismo , Aminoácidos , Proteínas Alimentares , Ingestão de Alimentos , Período Pós-Prandial/fisiologia
9.
J Physiol ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293995

RESUMO

Skeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse-induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single-limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate. Compared with the contralateral control limb, 3 days of immobilization lowered myofibrillar fractional synthesis rates (FSR, P < 0.0001), resulting in muscle atrophy. Although FSR and mitophagy-related proteins were higher in subsarcolemmal (SS) compared with intermyofibrillar (IMF) mitochondria, immobilization for 3 days decreased FSR in both SS (P = 0.009) and IMF (P = 0.031) mitochondria. Additionally, 3 days of immobilization reduced maximal mitochondrial respiration, decreased mitochondrial protein content, and increased maximal mitochondrial reactive oxygen species emission, without altering mitophagy-related proteins in muscle homogenate or isolated mitochondria (SS and IMF). Although nitrate consumption did not attenuate the decline in muscle mass or myofibrillar FSR, intriguingly, nitrate completely prevented immobilization-induced reductions in SS and IMF mitochondrial FSR. In addition, nitrate prevented alterations in mitochondrial content and bioenergetics after both 3 and 7 days of immobilization. However, in contrast to 3 days of immobilization, nitrate did not prevent the decline in SS and IMF mitochondrial FSR after 7 days of immobilization. Therefore, although nitrate supplementation was not sufficient to prevent muscle atrophy, nitrate may represent a promising therapeutic strategy to maintain mitochondrial bioenergetics and transiently preserve mitochondrial protein synthesis rates during short-term muscle disuse. KEY POINTS: Alterations in mitochondrial bioenergetics (decreased respiration and increased reactive oxygen species) are thought to contribute to muscle atrophy and reduced protein synthesis rates during muscle disuse. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation could attenuate immobilization-induced skeletal muscle impairments in female mice. Dietary nitrate prevented short-term (3 day) immobilization-induced declines in mitochondrial protein synthesis rates, reductions in markers of mitochondrial content, and alterations in mitochondrial bioenergetics. Despite these benefits and the preservation of mitochondrial content and bioenergetics during more prolonged (7 day) immobilization, nitrate consumption did not preserve skeletal muscle mass or myofibrillar protein synthesis rates. Overall, although dietary nitrate did not prevent atrophy, nitrate supplementation represents a promising nutritional approach to preserve mitochondrial function during muscle disuse.

10.
Med Sci Sports Exerc ; 55(10): 1792-1802, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202878

RESUMO

INTRODUCTION: Protein ingestion during recovery from exercise has been reported to augment myofibrillar protein synthesis rates, without increasing muscle connective protein synthesis rates. It has been suggested that collagen protein may be effective in stimulating muscle connective protein synthesis. The present study assessed the capacity of both whey and collagen protein ingestion to stimulate postexercise myofibrillar and muscle connective protein synthesis rates. METHODS: In a randomized, double-blind, parallel design, 45 young male ( n = 30) and female ( n = 15) recreational athletes (age, 25 ± 4 yr; body mass index, 24.1 ± 2.0 kg·m -2 ) were selected to receive primed continuous intravenous infusions with l -[ring- 13 C 6 ]-phenylalanine and l -[3,5- 2 H 2 ]-tyrosine. After a single session of resistance type exercise, subjects were randomly allocated to one of three groups ingesting either 30 g whey protein (WHEY, n = 15), 30 g collagen protein (COLL, n = 15) or a noncaloric placebo (PLA, n = 15). Blood and muscle biopsy samples were collected over a subsequent 5-h recovery period to assess both myofibrillar and muscle connective protein synthesis rates. RESULTS: Protein ingestion increased circulating plasma amino acid concentrations ( P < 0.05). The postprandial rise in plasma leucine and essential amino acid concentrations was greater in WHEY compared with COLL, whereas plasma glycine and proline concentrations increased more in COLL compared with WHEY ( P < 0.05). Myofibrillar protein synthesis rates averaged 0.041 ± 0.010, 0.036 ± 0.010, and 0.032 ± 0.007%·h -1 in WHEY, COLL and PLA, respectively, with only WHEY resulting in higher rates when compared with PLA ( P < 0.05). Muscle connective protein synthesis rates averaged 0.072 ± 0.019, 0.068 ± 0.017, and 0.058 ± 0.018%·h -1 in WHEY, COLL, and PLA, respectively, with no significant differences between groups ( P = 0.09). CONCLUSIONS: Ingestion of whey protein during recovery from exercise increases myofibrillar protein synthesis rates. Neither collagen nor whey protein ingestion further increased muscle connective protein synthesis rates during the early stages of postexercise recovery in both male and female recreational athletes.


Assuntos
Colágeno , Proteínas Musculares , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Proteínas Musculares/metabolismo , Proteínas do Soro do Leite , Colágeno/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Poliésteres/farmacologia , Período Pós-Prandial , Proteínas Alimentares
11.
Sports Med ; 53(7): 1445-1455, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36857005

RESUMO

BACKGROUND: Casein protein ingestion prior to sleep has been shown to increase myofibrillar protein synthesis rates during overnight sleep. It remains to be assessed whether pre-sleep protein ingestion can also increase mitochondrial protein synthesis rates. Though it has been suggested that casein protein may be preferred as a pre-sleep protein source, no study has compared the impact of pre-sleep whey versus casein ingestion on overnight muscle protein synthesis rates. OBJECTIVE: We aimed to assess the impact of casein and whey protein ingestion prior to sleep on mitochondrial and myofibrillar protein synthesis rates during overnight recovery from a bout of endurance-type exercise. METHODS: Thirty-six healthy young men performed a single bout of endurance-type exercise in the evening (19:45 h). Thirty minutes prior to sleep (23:30 h), participants ingested 45 g of casein protein, 45 g of whey protein, or a non-caloric placebo. Continuous intravenous L-[ring-13C6]-phenylalanine infusions were applied, with blood and muscle tissue samples being collected to assess overnight mitochondrial and myofibrillar protein synthesis rates. RESULTS: Pooled protein ingestion resulted in greater mitochondrial (0.087 ± 0.020 vs 0.067 ± 0.016%·h-1, p = 0.005) and myofibrillar (0.060 ± 0.014 vs 0.047 ± 0.011%·h-1, p = 0.012) protein synthesis rates when compared with placebo. Casein and whey protein ingestion did not differ in their capacity to stimulate mitochondrial (0.082 ± 0.019 vs 0.092 ± 0.020%·h-1, p = 0.690) and myofibrillar (0.056 ± 0.009 vs 0.064 ± 0.018%·h-1, p = 0.440) protein synthesis rates. CONCLUSIONS: Protein ingestion prior to sleep increases both mitochondrial and myofibrillar protein synthesis rates during overnight recovery from exercise. The overnight muscle protein synthetic response to whey and casein protein does not differ. CLINICAL TRIAL REGISTRATION: NTR7251 .


Assuntos
Caseínas , Proteínas Alimentares , Masculino , Humanos , Caseínas/metabolismo , Proteínas do Soro do Leite/metabolismo , Sono/fisiologia , Proteínas Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Ingestão de Alimentos , Músculo Esquelético/metabolismo
12.
J Nutr ; 153(1): 66-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913480

RESUMO

BACKGROUND: Ingestion of protein concentrates or isolates increases muscle protein synthesis rates in young and older adults. There is far less information available on the anabolic response following the ingestion of dairy wholefoods, which are commonly consumed in a normal diet. OBJECTIVES: This study investigates whether ingestion of 30 g protein provided as quark increases muscle protein synthesis rates at rest and whether muscle protein synthesis rates are further increased after resistance exercise in young and older adult males. METHODS: In this parallel-group intervention trial, 14 young (18-35 y) and 15 older (65-85 y) adult males ingested 30 g protein provided as quark after a single-legged bout of resistance exercise on leg press and leg extension machines. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data represent means ± SDs; η2 was used to measure the effect size. RESULTS: Plasma total amino acid and leucine concentrations increased after quark ingestion in both groups (both time: P < 0.001; η2 > 0.8), with no differences between groups (time × group: P = 0.127 and P = 0.172, respectively; η2<0.1). Muscle protein synthesis rates increased following quark ingestion at rest in both young (from 0.030 ± 0.011 to 0.051 ± 0.011 %·h-1) and older adult males (from 0.036 ± 0.011 to 0.062 ± 0.013 %·h-1), with a further increase in the exercised leg (to 0.071 ± 0.023 %·h-1 and to 0.078 ± 0.019 %·h-1, respectively; condition: P < 0.001; η2 = 0.716), with no differences between groups (condition × group: P = 0.747; η2 = 0.011). CONCLUSIONS: Quark ingestion increases muscle protein synthesis rates at rest with a further increase following exercise in both young and older adult males. The postprandial muscle protein synthetic response following quark ingestion does not differ between healthy young and older adult males when an ample amount of protein is ingested. This trial was registered at the Dutch Trial register, which is accessible via trialsearch.who.int www.trialregister.nl as NL8403.


Assuntos
Proteínas Musculares , Treinamento Resistido , Masculino , Humanos , Proteínas Musculares/metabolismo , Método Duplo-Cego , Leucina/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Proteínas Alimentares/metabolismo , Período Pós-Prandial
13.
Obesity (Silver Spring) ; 31 Suppl 1: 116-126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546330

RESUMO

OBJECTIVE: This study aimed to assess the impact of time-restricted eating (TRE) on integrated skeletal muscle myofibrillar protein synthesis (MyoPS) rates in males with overweight/obesity. METHODS: A total of 18 healthy males (age 46 ± 5 years; BMI: 30 ± 2 kg/m2 ) completed this exploratory, parallel, randomized dietary intervention after a 3-day lead-in diet. Participants then consumed an isoenergetic diet (protein: ~1.0 g/kg body mass per day) following either TRE (10:00 a.m. to 6:00 p.m.) or an extended eating control (CON; 8:00 a.m. to 8:00 p.m.) protocol for 10 days. Integrated MyoPS rates were measured using deuterated water administration with repeated saliva, blood, and muscle sampling. Secondary measures included continuous glucose monitoring and body composition (dual-energy x-ray absorptiometry). RESULTS: There were no differences in daily integrated MyoPS rates (TRE: 1.28% ± 0.18% per day, CON: 1.26% ± 0.22% per day; p = 0.82) between groups. From continuous glucose monitoring, 24-hour total area under the curve was reduced following TRE (-578 ± 271 vs. CON: 12 ± 272 mmol/L × 24 hours; p = 0.001). Total body mass declined (TRE: -1.6 ± 0.9 and CON: -1.1 ± 0.7 kg; p < 0.001) with no differences between groups (p = 0.22). Lean mass loss was greater following TRE compared with CON (-1.0 ± 0.7 vs. -0.2 ± 0.5 kg, respectively; p = 0.01). CONCLUSION: Consuming food within an 8-hour time-restricted period does not lower daily MyoPS rates when compared with an isoenergetic diet consumed over 12 hours. Future research should investigate whether these results translate to free-living TRE.


Assuntos
Automonitorização da Glicemia , Glicemia , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Glicemia/metabolismo , Obesidade/metabolismo , Dieta , Músculo Esquelético/metabolismo
14.
J Nutr ; 152(12): 2734-2743, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36170964

RESUMO

BACKGROUND: Plant-derived proteins are considered to have lesser anabolic properties when compared with animal-derived proteins. The attenuated rise in muscle protein synthesis rates following ingestion of plant-derived compared with animal-derived protein has been, at least partly, attributed to deficiencies in specific amino acids such as leucine, lysine, and/or methionine. Combining different plant-derived proteins could provide plant-derived protein blends with a more balanced amino acid profile. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following the ingestion of 30 g milk protein with a 30 g blend combining wheat, corn, and pea protein in healthy young men. METHODS: In a randomized, double-blind, parallel-group design, 24 young males (aged 24 ± 4 y) received a primed continuous l-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK) or a 30 g plant-derived protein blend combining 15 g wheat, 7.5 g corn, and 7.5 g pea protein (PLANT-BLEND). Blood and muscle biopsies were collected frequently for 5 h to assess postprandial plasma amino acid profiles (secondary outcome) and subsequent muscle protein synthesis rates (primary outcome). Data were analyzed by 2-factor repeated measures ANOVA and 2-samples t tests. RESULTS: MILK increased plasma essential amino acid concentrations more than PLANT-BLEND over the 5 h postprandial period (incremental AUC = 151 ± 31 compared with 79 ± 12 mmol·300 min·L-1, respectively; P < 0.001). Ingestion of both MILK and PLANT-BLEND increased myofibrillar protein synthesis rates (P < 0.001), with no significant differences between treatments (0.053 ± 0.013%/h and 0.064 ± 0.016%/h, respectively; P = 0.08). CONCLUSIONS: Ingestion of 30 g plant-derived protein blend combining wheat-, corn-, and pea-derived protein increases muscle protein synthesis rates in healthy young males. The muscle protein synthetic response to the ingestion of 30 g of this plant-derived protein blend does not differ from the ingestion of an equivalent amount of a high-quality animal-derived protein.Clinical trial registry number for Nederlands Trial Register: NTR6548 (https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6548).


Assuntos
Proteínas do Leite , Proteínas de Ervilha , Animais , Masculino , Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ervilha/metabolismo , Proteínas de Plantas/metabolismo , Período Pós-Prandial , Método Duplo-Cego
15.
J Ren Nutr ; 33(2): 376-385, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35988911

RESUMO

OBJECTIVE: Dietary protein and physical activity interventions are increasingly implemented during hemodialysis to support muscle maintenance in patients with end-stage renal disease (ESRD). Although muscle maintenance is important, adequate removal of uremic toxins throughout hemodialysis is the primary concern for patients. It remains to be established whether intradialytic protein ingestion and/or exercise modulate uremic toxin removal during hemodialysis. METHODS: We recruited 10 patients with ESRD (age: 65 ± 16 y, BMI: 24.2 ± 4.8 kg/m2) on chronic hemodialysis treatment to participate in this randomized cross-over trial. During hemodialysis, patients were assigned to ingest 40 g protein or a nonprotein placebo both at rest (protein [PRO] and placebo [PLA], respectively) and following 30 min of exercise (PRO + exercise [EX] and PLA + EX, respectively). Blood and spent dialysate samples were collected throughout hemodialysis to assess reduction ratios and removal of urea, creatinine, phosphate, cystatin C, and indoxyl sulfate. RESULTS: The reduction ratios of urea and indoxyl sulfate were higher during PLA (76 ± 6% and 46 ± 9%, respectively) and PLA + EX interventions (77 ± 5% and 45 ± 10%, respectively) when compared to PRO (72 ± 4% and 40 ± 8%, respectively) and PRO + EX interventions (73 ± 4% and 43 ± 7%, respectively; protein effect: P = .001 and P = .023, respectively; exercise effect: P = .25 and P = .52, respectively). Nonetheless, protein ingestion resulted in greater urea removal (P = .046) during hemodialysis. Reduction ratios and removal of creatinine, phosphate, and cystatin C during hemodialysis did not differ following intradialytic protein ingestion or exercise (protein effect: P > .05; exercise effect: P>.05). Urea, creatinine, and phosphate removal were greater throughout the period with intradialytic exercise during PLA + EX and PRO + EX interventions when compared to the same period during PLA and PRO interventions (exercise effect: P = .034, P = .039, and P = .022, respectively). CONCLUSION: The removal of uremic toxins is not compromised by protein feeding and/or exercise implementation during hemodialysis in patients with ESRD.


Assuntos
Cistatina C , Falência Renal Crônica , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Toxinas Urêmicas , Creatinina , Indicã , Diálise Renal/métodos , Falência Renal Crônica/terapia , Exercício Físico , Ureia , Fosfatos , Ingestão de Alimentos , Poliésteres
16.
Sci Rep ; 12(1): 7553, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534615

RESUMO

The molecular responses to acute resistance exercise are well characterized. However, how cellular signals change over time to modulate chronic adaptations to more prolonged exercise training is less well understood. We investigated anabolic signaling and muscle protein synthesis rates at several time points after acute and chronic eccentric loading. Adult rat tibialis anterior muscle was stimulated for six sets of ten repetitions, and the muscle was collected at 0 h, 6 h, 18 h and 48 h. In the last group of animals, 48 h after the first exercise bout a second bout was conducted, and the muscle was collected 6 h later (54 h total). In a second experiment, rats were exposed to four exercise sessions over the course of 2 weeks. Anabolic signaling increased robustly 6 h after the first bout returning to baseline between 18 and 48 h. Interestingly, 6 h after the second bout mTORC1 activity was significantly lower than following the first bout. In the chronically exercised rats, we found baseline anabolic signaling was decreased, whereas myofibrillar protein synthesis (MPS) was substantially increased, 48 h after the last bout of exercise. The increase in MPS occurred in the absence of changes to muscle fiber size or mass. In conclusion, we find that anabolic signaling is already diminished after the second bout of acute resistance type exercise. Further, chronic exposure to resistance type exercise training results in decreased basal anabolic signaling but increased overall MPS rates.


Assuntos
Músculo Esquelético , Treinamento Resistido , Animais , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ratos , Transdução de Sinais
17.
Med Sci Sports Exerc ; 54(9): 1572-1581, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438672

RESUMO

INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l -[ ring - 13 C 6 ]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h -1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h -1 , respectively; P < 0.001), with no differences between treatments ( P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h -1 after ingesting potato and milk protein, respectively ( P < 0.001), with no differences between treatments ( P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg ( P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein.


Assuntos
Proteínas Alimentares , Proteínas Musculares , Solanum tuberosum , Adulto , Proteínas Alimentares/metabolismo , Método Duplo-Cego , Ingestão de Alimentos , Humanos , Masculino , Proteínas do Leite , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Treinamento Resistido , Solanum tuberosum/metabolismo , Adulto Jovem
18.
Appl Physiol Nutr Metab ; 47(5): 547-554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35138972

RESUMO

We aimed to assess the association between gastrointestinal (GI) injury, complaints, and food intake in 60-km ultramarathon runners. Thirty-three ultramarathon runners provided pre- and post-race blood samples for assessment of GI injury by intestinal fatty-acid binding protein (I-FABP), and inflammatory response by interleukin (IL)-6, IL-8, tumour necrosis factor alpha (TNF-α), and C-reactive protein (CRP). GI complaints and nutritional intake were reported by a post-race questionnaire. GI complaints were reported by 73% of the runners, of which 20% reported 1 or 2 severe complaints. IL-6, IL8, TNF-α, and CRP increased significantly from pre- to post-race (P < 0.001 for all biomarkers), while I-FABP did not (1375 [IQR: 1264-2073] to 1726 [IQR: 985-3287] pg/mL; P = 0.330). The 'GI complaints score', as the integral of the number and severity of GI complaints, did not correlate with ΔI-FABP (rs: -0.050, P = 0.790) or energy intake (rs: 0.211, P = 0.260). However, there was a significant negative correlation between energy intake and ΔI-FABP (rs: -0.388, P = 0.031). In conclusion, GI complaints were neither associated with food intake nor GI injury as assessed by plasma I-FABP response. Energy intake, however, was inversely related to the I-FABP response to exercise. This finding suggests that substantial energy intakes during exercise may prevent exercise-induced GI injury as assessed by the I-FABP response. Novelty: No association between gastrointestinal complaints and gastrointestinal injury (I-FABP response) or food intake was present. There was an inverse correlation between energy intake and plasma I-FABP response, suggesting that higher energy intakes may prevent gastrointestinal injury as assessed by the I-FABP response.


Assuntos
Corrida , Ingestão de Alimentos , Exercício Físico/fisiologia , Trato Gastrointestinal/metabolismo , Interleucina-6/metabolismo , Corrida/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
19.
J Nutr ; 152(4): 1022-1030, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020907

RESUMO

BACKGROUND: Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. OBJECTIVES: To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. METHODS: In this randomized, parallel-group intervention trial, 20 healthy males aged 18-35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. RESULTS: Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h-1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h-1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h-1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h-1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). CONCLUSION: Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.


Assuntos
Queijo , Proteínas Musculares , Adolescente , Adulto , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Humanos , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Adulto Jovem
20.
J Nutr ; 152(4): 1022-1030, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36967159

RESUMO

BACKGROUND: Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. OBJECTIVES: To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. METHODS: In this randomized, parallel-group intervention trial, 20 healthy males aged 18-35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. RESULTS: Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h-1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h-1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h-1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h-1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). CONCLUSION: Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.


Assuntos
Queijo , Proteínas Musculares , Masculino , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Proteínas do Leite/metabolismo , Método Duplo-Cego , Ingestão de Alimentos , Período Pós-Prandial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA