RESUMO
Compared to the determination of exercise thresholds based on systemic changes in blood lactate concentrations or gas exchange data, the determination of breakpoints based on muscle oxygen saturation offers a valid alternative to provide specific information on muscle-derived thresholds. Our study explored the profiles and timing of the second muscle oxygenation threshold (MOT2) in different muscles. Twenty-six cyclists and triathletes (15 male: age = 23 ± 7 years, height = 178 ± 5 cm, body mass = 70.2 ± 5.3 kg; 11 female: age = 22 ± 4 years, height = 164 ± 4 cm, body mass = 58.3 ± 8.1 kg) performed a graded exercise test (GXT), on a cycle ergometer. Power output, blood lactate concentration, heart rate, rating of perceived exertion, skinfolds and muscle oxygen saturation were registered in five muscles (vastus lateralis, biceps femoris, gastrocnemius medialis, tibialis anterior and triceps brachii) and percentage at which MOT2 occurred for each muscle was determinated using the Exponential Dmax. The results of Statistical Parametric Mapping and ANOVA showed that, although muscle oxygenation displayed different profiles in each muscle during a GXT, MOT2 occurred at a similar percentage of the GXT in each muscle (77% biceps femoris, 75% tibalis anterior, 76% gastrocnemius medialis and 72% vastus lateralis) and it was similar that systemic threshold (73% of the GXT). In conclusion, this study showed different profiles of muscle oxygen saturation in different muscles, but without notable differences in the timing for MOT2 and concordance with systemic threshold. Finally, we suggest the analysis of the whole signal and not to simplify it to a breakpoint.
RESUMO
The aim of the present study was to evaluate skin temperature (Tsk) asymmetries, using infrared thermography, in professional padel players before (PRE), after (POST) and 10 min after training (POST10), and their relationship with perceptual variables and training characteristics. Thermal images were taken of 10 players before, after and 10 min after a standardized technical training. After training, Tsk of the dominant side was higher than before training in the anterior forearm (30.8 ± 0.4 °C vs. 29.1 ± 1.2 °C, p < 0.01; ES = 1.9), anterior shoulder (31.6 ± 0.6 °C vs. 30.9 ± 0.6 °C, p < 0.05; ES = 1.0) posterior arm (29.5 ± 1.0 °C vs. 28.3 ± 1.2 °C, p < 0.05; ES = 1.0), and posterior forearm (30.8 ± 0.9 °C vs. 29.3 ± 1.6 °C, p < 0.05; ES = 1.1). Likewise, these differences were significant POST10 in the anterior arm, anterior forearm, anterior shoulder, posterior arm and posterior forearm. Comparing the different moments of measurement (PRE, POST and POST10), the temperature was higher POST10 in all the regions analyzed except for the shoulder, abdominals, and lower back. Also, correlations were found between fatigue variation and temperature variation between limbs (Tsk dominance), and no correlation was found except between age and posterior thigh (|r| = 0.69; p < 0.05), and between the racket mass and anterior knee (|r| = 0.81; p < 0.01). In conclusion, infrared thermography allows monitoring of skin asymmetries between limbs in professional padel players, but these asymmetries were not related to overall fatigue variation, overall pain variation, years of experience and training hours.
Assuntos
Temperatura Cutânea , Termografia , Humanos , Temperatura Cutânea/fisiologia , Termografia/métodos , Masculino , Adulto , Raios Infravermelhos , Adulto Jovem , Antebraço/fisiologia , AtletasRESUMO
Skin temperature responses have been advocated to indicate exercise-induced muscle soreness and recovery status. While the evidence is contradictory, we hypothesize that the presence of muscle damage and the time window of measurement are confounding factors in the skin temperature response. The objective was to determine whether skin temperature is influenced by different workloads and the time course of temperature measurements over the following 24 h. 24 trained male military were assigned to one of three groups: GC group (n = 8) serving as control not performing exercises, GE group (n = 8) performing a simulated military combat protocol in an exercise track with different obstacles but designed not to elicit muscle damage, and the GEMD group (n = 8) performing the simulated military combat protocol plus 5 sets of 20 drop jumps, with 10-sec between repetitions and with 2-min of rest between sets aiming to induce muscle damage. Skin temperature was measured using infrared thermography before exercise (Pre) and 4 (Post4h), 8 (Post8h) and 24h (Post24h) post-exercise. Perception of pain (DOMS) was evaluated Pre, Post24h, and Post48h, and countermovement jump height was evaluated at Pre and Post24h. DOMS did not differ between groups in the Pre and Post24h measures but GEMD presented higher DOMS than the other groups at Post48h (p < 0.001 and large effect size). Jump height did not differ for GEMD and GC, and GE presented higher jump height at Post24h than GC (p = 0.02 and large effect size). Skin temperature responses of GEMD and GG were similar in all measurement moments (p > 0.22), and GE presented higher skin temperature than the GC and the GEMD groups at Post24h (p < 0.01 and large effect sizes). In conclusion, although physical exercise elicits higher skin temperature that lasts up to 24 h following the efforts, muscle soreness depresses this response.
Assuntos
Exercício Físico , Mialgia , Temperatura Cutânea , Humanos , Masculino , Adulto , Mialgia/fisiopatologia , Adulto Jovem , MilitaresRESUMO
Internationalization in higher education is essential, and although active learning methodologies are increasing and allow students to develop transversal skills, most still have a very local scope. In this context, the Collaborative Online International Learning (COIL) methodology is an interesting approach to benefit the students' development. It consists of an online program that involves creating multicultural teams to develop a specific learning project. Although this methodology is expanding, its use in physiology is still scarce. This paper aims to show an example of applying COIL methodology in physiology topics to enhance higher-education students' innovation and business skills. Our example project developed a sports-assessment service concept focused on physiology and biomechanics assessments. The program involved teams from Brazil, Germany, and Spain, comprising undergraduate and master students. Over 7 weeks, these teams, mentored by professors and researchers, engaged in workshops covering COIL methodology, business model design, executive summary planning, economic analyses, and communication techniques. Key outcomes included learning new concepts, developing soft skills, building confidence in innovative solution proposals, and experiencing diverse cultures. Challenges faced were language barriers, scheduling, task complexity, and logistical issues. This experience confirms the effectiveness of incorporating programs using COIL methodology into educational curriculums. Doing so exposes physiology students to innovation, entrepreneurship, and business creation while strengthening their professional connections and opening up postgraduation opportunities.NEW & NOTEWORTHY Although the Collaborative Online International Learning (COIL) methodology is expanding, its use in physiology is still scarce. Our example COIL project of 7 weeks developed a sports-assessment service concept focused on physiology and biomechanics assessments. The program involved teams from Brazil, Germany, and Spain, comprising undergraduate and master's students. Students perceived extracurricular activities in this format as beneficial. Coaches also expressed positive views about such initiatives, noting benefits for students and their development.
Assuntos
Fisiologia , Humanos , Fisiologia/educação , Educação a Distância/métodos , Internacionalidade , Currículo , Comportamento CooperativoRESUMO
Objective. Threshold determination for improving training and sports performance is important for researchers and trainers, who currently use different methods for determining lactate, ventilatory or muscle oxygenation (SmO2) thresholds. Our study aimed to compare the identification of the intensity at the first and second thresholds using lactate and SmO2data by different mathematical methods in different muscles during a graded cycling test.Approach. Twenty-six cyclists (15 males and 11 females; 23 ±6 years, 1.71 ± 0.09 m, 64.3 ± 8.8 Kg and 12 ± 3 training hours per week) performed a graded test on the cycle ergometer. Power output and saturation of muscle oxygen in four muscles (vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior) were measured, along with systemic lactate concentration.Main Results. Our results showed that any method was reliable for determining the first muscle oxygenation threshold (MOT1) when comparing the lactate threshold in any muscle. However, the best method for determining the second muscle oxygenation threshold (MOT2) was the Exp-Dmax (p< 0.01; ICC = 0.79-0.91) in all muscles. In particular, the vastus lateralis muscle showed the highest intraclass correlation coefficient (ICC = 0.91, CI95% [0.81, 0.96]). However, results varied per sex across all muscles analyzed.Significance. Although the first muscle oxygenation threshold could not be determined using mathematical methods in all the muscles analyzed, the Exp-Dmax method presented excellent results in detecting the second systemic threshold in the vastus lateralis.
Assuntos
Desempenho Atlético , Ácido Láctico , Masculino , Feminino , Humanos , Músculo Esquelético/fisiologia , Ciclismo/fisiologia , Músculo QuadrícepsRESUMO
Although in recent years near-infrared spectroscopy has been used in many sports to monitor muscle oxygen saturation (SmO2), there is a lack of knowledge about the sex differences in SmO2 during exercise in different muscles. Our study aimed to examine SmO2 differences in muscles between female and male cyclists, during a graded cycling test and at the first and second lactate thresholds. Twenty-five trained cyclists and triathletes (15 males: 23 ± 7 yr, 1.78 ± 0.05 m, 70.2 ± 5.3 kg, and 10 females: 22 ± 5 yr, 1.64 ± 0.06 m, 58 ± 8 kg) performed a graded cycling test on the cycle ergometer. Power output and SmO2 in five muscles (dominant vastus lateralis, tibialis anterior, gastrocnemius medial, biceps femoris, and triceps brachii) were measured. Our mixed regression models showed that the interaction between power output and sex was significant for all the muscles analyzed (P < 0.001), indicating a greater decrease in SmO2 for males as power output increased. Moreover, the statistical parametric mapping analyses showed for females higher SmO2 in the middle of the test in biceps femoris (P = 0.03), gastrocnemius medial (P = 0.02), and tibialis anterior (P = 0.04). Finally, the males presented a lower SmO2 in all muscles where the second lactate threshold occurred, with greater evidence than in the first lactate threshold. In conclusion, females have higher SmO2 in all muscles, and these differences are more noticeable during the graded cycling test, such that males seem to have a greater reliance on oxygen extraction than females for a given relative intensity of exercise.NEW & NOTEWORTHY This study investigated the profiles of muscle oxygen saturation (SmO2) during incremental exercise in females and males. Females presented higher overall SmO2 than males during moderate and heavy intensity domain exercise in all muscles including muscles that are not mainly involved in pedaling (triceps brachii), from those that are stabilizers (medial gastrocnemius, tibialis anterior, and biceps femoris), to those that are related to power output production (vastus lateralis).
Assuntos
Saturação de Oxigênio , Caracteres Sexuais , Masculino , Humanos , Feminino , Músculo Esquelético/fisiologia , Músculo Quadríceps , Ácido Láctico , Teste de Esforço , Consumo de Oxigênio , Oxigênio/metabolismoRESUMO
Over the last few years, portable Near-Infrared Spectroscopy (NIRS) technology has been suggested for determining metabolic/ventilator thresholds. This systematic review and meta-analysis aimed to assess the reliability of a portable muscle oxygenation monitor for determining thresholds during exercise testing. The proposed PICO question was: Is the exercise intensity of muscle oxygenation thresholds, using portable NIRS, reliable compared with lactate and ventilatory thresholds for exercise intensity determined in athletes? A search of Pubmed, Scopus and Web of Science was undertaken and the review was conducted following PRISMA guidelines. Fifteen articles were included. The domains which presented the highest biases were confounders (93% with moderate or high risk) and participant selection (100% with moderate or high risk). The intra-class correlation coefficient between exercise intensity of the first ventilatory or lactate threshold and the first muscle oxygenation threshold was 0.53 (obtained with data from only 3 studies), whereas the second threshold was 0.80. The present work shows that although a portable muscle oxygenation monitor has moderate to good reliability for determining the second ventilatory and lactate thresholds, further research is necessary to investigate the mathematical methods of detection, the capacity to detect the first threshold, the detection in multiple regions, and the effect of sex, performance level and adipose tissue in determining thresholds.
Assuntos
Exercício Físico , Músculo Esquelético , Humanos , Reprodutibilidade dos Testes , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Tecido Adiposo/metabolismo , Ácido Láctico/metabolismo , Consumo de Oxigênio/fisiologia , Teste de Esforço/métodosRESUMO
The response of female cyclists depending on the functional test duration has not been studied. This study aims to analyse the effect of modification of the duration of two different functional tests: Wingate (WAnT) and Functional Power Threshold (FTP) in female cyclists. Fourteen cyclists (27±8 years, 1,66±0,08 m, and 60,6±7,2 kg) performed 2 test days with a 24-hour break between days, varying the test duration (WAnT 20- or 30-sec, and FTP 8- or 10-min). Relative power output, cadence, heart rate, local oxygen saturation, lactate, and rating of perceived exertion were measured in each test. Time duration did not affect the power output outcomes in both tests (p>0,05). However, WAnT of 20 sec, compared with the test of 30 sec, resulted in a lower cadence decrease in the last 5 sec (p<0,01, ES=1,3), lower heart rate variables (peak, average and variation; p<0,01, ES>0,5), and higher execution inclination of local oxygen saturation (p<0,05 and ES=1,0). In conclusion, the time variations assessed do not alters power outcomes in female cyclists. However, higher acute fatigue can be observed in the WAnT of 30 sec, which suggests the use of the test of 20 sec to allow continue training afterwards.