Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 3(3): 2673-2682, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29623303

RESUMO

The straightforward synthesis and photophysical properties of a new series of heteroleptic iridium(III) bis(2-arylimidazole) picolinate complexes are reported. Each complex has been characterized by nuclear magnetic resonance, UV-vis, cyclic voltammetry, and photoluminescent angle dependency, and the emissive properties of each are described. The preferred orientation of transition dipoles in emitter/host thin films indicated more preferred orientation than homoleptic complex Ir(ppy)3.

2.
Small ; 14(12): e1702775, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424051

RESUMO

In this study, the fabrication of highly efficient and durable flexible inverted perovskite solar cells (PSCs) is reported. Presynthesized, solution-derived NiOx and ZnO nanoparticles films are employed at room temperature as a hole transport layer (HTL) and electron transport layer (ETL), respectively. The triple cation perovskite films are produced in a single step and for the sake of comparison, ultrasmooth and pinhole-free absorbing layers are also fabricated using MAPbI3 perovskite. The triple cation perovskite cells exhibit champion power conversion efficiencies (PCEs) of 18.6% with high stabilized power conversion efficiency of 17.7% on rigid glass/indium tin oxide (ITO) substrates (comparing with 16.6% PCE with 16.1% stabilized output efficiency for the flexible polyethylene naphthalate (PEN)/thin film barrier/ITO substrates). More interestingly, the durability of flexible PSC under simulation of operative condition is proved. Over 85% of the maximum stabilized output efficiency is retained after 1000 h aging employing a thin MAPbI3 perovskite (over 90% after 500 h with a thick triple cation perovskite). This result is comparable to a similar state of the art rigid PSC and represents a breakthrough in the stability of flexible PSC using ETLs and HTLs compatible with roll to roll production speed, thanks to their room temperature processing.

3.
J Mater Chem C Mater ; 5(26): 6555-6562, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29308204

RESUMO

The efficiency of organic light emitting diodes (OLEDs) can be improved by controlling the orientation of the transition dipole moment of the emitters. Currently, no effective methods exist for orienting the transition dipole moments in solution processed active layers for OLEDs. We investigate the orientation of the transition dipole moment of small molecular emitters in a host matrix of poly(9,9-dioctylfluorene) (PFO) by means of angle dependent luminescence intensity measurements. The polymer chains of the host orient predominantly in the plane of the film. Fluorescent p-phenylenevinylene oligomers with 6 and 7 repeat units (OPV6, OPV7) are found to also orient preferentially horizontally. The orientation of the emitters can be improved by thermal annealing with up to 90% of transition dipole moments oriented in the plane of the film. The phosphorescent emitter Ir(MDQ)2(acac) shows a degree of horizontal orientation in the polymeric host matrix lower than that which is observed for oligomers, but as high as is observed for the same emitter in evaporated layers. A carbazole derivative capable of thermally activated delayed fluorescence shows a small preference for vertical orientation within the polymer host. The strong orientation of OPV6 and OPV7 in the oriented polymer host is rationalized in terms of their high aspect ratios. The use of PFO as host material in host/guest systems allows achieving horizontal orientation of transition dipole moments in solution processed oligomers and small molecular emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA