Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 117(5): 656-665, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28751755

RESUMO

BACKGROUND: Translationally controlled tumour protein (TCTP) is an antiapoptotic protein highly conserved through phylogeny. Translationally controlled tumour protein overexpression was detected in several tumour types. Silencing TCTP was shown to induce tumour reversion. There is a reciprocal repression between TCTP and P53. Sertraline interacts with TCTP and decreases its cellular levels. METHODS: We evaluate the role of TCTP in melanoma using sertraline and siRNA. Cell viability, migration, and clonogenicity were assessed in human and murine melanoma cells in vitro. Sertraline was evaluated in a murine melanoma model and was compared with dacarbazine, a major chemotherapeutic agent used in melanoma treatment. RESULTS: Inhibition of TCTP levels decreases melanoma cell viability, migration, clonogenicity, and in vivo tumour growth. Human melanoma cells treated with sertraline show diminished migration properties and capacity to form colonies. Sertraline was effective in inhibiting tumour growth in a murine melanoma model; its effect was stronger when compared with dacarbazine. CONCLUSIONS: Altogether, these results indicate that sertraline could be effective against melanoma and TCTP can be a target for melanoma therapy.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Melanoma/genética , RNA Mensageiro/metabolismo , Sertralina/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/uso terapêutico , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Inativação Gênica , Humanos , Melanoma/metabolismo , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Sertralina/uso terapêutico , Transfecção , Proteína Tumoral 1 Controlada por Tradução , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/metabolismo
2.
Insect Mol Biol ; 26(1): 25-34, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743460

RESUMO

Loxosceles intermedia venom comprises a complex mixture of proteins, glycoproteins and low molecular mass peptides that act synergistically to immobilize envenomed prey. Analysis of a venom-gland transcriptome from L. intermedia revealed that knottins, also known as inhibitor cystine knot peptides, are the most abundant class of toxins expressed in this species. Knottin peptides contain a particular arrangement of intramolecular disulphide bonds, and these peptides typically act upon ion channels or receptors in the insect nervous system, triggering paralysis or other lethal effects. Herein, we focused on a knottin peptide with 53 amino acid residues from L. intermedia venom. The recombinant peptide, named U2 -sicaritoxin-Li1b (Li1b), was obtained by expression in the periplasm of Escherichia coli. The recombinant peptide induced irreversible flaccid paralysis in sheep blowflies. We screened for knottin-encoding sequences in total RNA extracts from two other Loxosceles species, Loxosceles gaucho and Loxosceles laeta, which revealed that knottin peptides constitute a conserved family of toxins in the Loxosceles genus. The insecticidal activity of U2 -SCTX-Li1b, together with the large number of knottin peptides encoded in Loxosceles venom glands, suggests that studies of these venoms might facilitate future biotechnological applications of these toxins.


Assuntos
Aranha Marrom Reclusa/genética , Miniproteínas Nó de Cistina/química , Inseticidas/análise , Diester Fosfórico Hidrolases/química , Venenos de Aranha/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Aranha Marrom Reclusa/metabolismo , Sequência Conservada , Miniproteínas Nó de Cistina/biossíntese , Miniproteínas Nó de Cistina/genética , Miniproteínas Nó de Cistina/isolamento & purificação , Dípteros , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Dados de Sequência Molecular , Proteoma , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Testes de Toxicidade , Transcriptoma
3.
Biochim Biophys Acta ; 1861(9 Pt A): 970-979, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27233517

RESUMO

Brown spider phospholipases D from Loxosceles venoms are among the most widely studied toxins since they induce dermonecrosis, triggering inflammatory responses, increase vascular permeability, cause hemolysis, and renal failure. The catalytic (H12 and H47) and metal-ion binding (E32 and D34) residues in Loxosceles intermedia phospholipase D (LiRecDT1) were mutated to understand their roles in the observed activities. All mutants were identified using whole venom serum antibodies and a specific antibody to wild-type LiRecDT1, they were also analyzed by circular dichroism (CD) and differential scanning calorimetry (DSC). The phospholipase D activities of H12A, H47A, H12A-H47A, E32, D34 and E32A-D34A, such as vascular permeability, dermonecrosis, and hemolytic effects were inhibited. The mutant Y228A was equally detrimental to biochemical and biological effects of phospholipase D, suggesting an essential role of this residue in substrate recognition and binding. On the other hand, the mutant C53A-C201A reduced the enzyme's ability to hydrolyze phospholipids and promote dermonecrosis, hemolytic, and vascular effects. These results provide the basis understanding the importance of specific residues in the observed activities and contribute to the design of synthetic and specific inhibitors for Brown spider venom phospholipases D.


Assuntos
Domínio Catalítico/genética , Fosfolipase D/química , Fosfolipídeos/química , Venenos de Aranha/enzimologia , Animais , Aranha Marrom Reclusa/química , Aranha Marrom Reclusa/enzimologia , Permeabilidade Capilar , Dicroísmo Circular , Hemólise , Mutação , Fosfolipase D/metabolismo , Fosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/química , Venenos de Aranha/química
4.
Toxicon ; 98: 62-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25720299

RESUMO

This is the first study on the hemolymph from a spider of the Loxosceles genus. These animals are responsible for a great number of envenomation cases worldwide. Several studies on Loxosceles venoms have been published, and the knowledge about the venom and its toxins is considerable, not only regarding the biological and biochemical characterization, but also regarding structural, genetic and phylogenetic approaches. However, the literature on Loxosceles hemolymph is nonexistent. The main goal of the present study was to characterize biochemically the hemolymph content, and especially, to identify its different hemocytes. Moreover, many papers have already shown molecules whose source is the hemolymph and their very interesting activities and biomedical applications, for example, antifungal and antibacterial activities. A 2D-SDS-PAGE of brown spider hemolymph showed approximately 111 spots for pH 3-10 and 150 spots for pH 4-7. A lectin-blotting assay showed that hemolymph carbohydrate residues were similar to those found in venom. Several types of TAG and DAG phospholipids were found in the hemolymph and characterized by HPTLC and mass spectrometry. Four different hemocytes were characterized in Loxosceles intermedia hemolymph: prohemocyte, plasmatocyte, granulocyte and adipohemocyte. This paper opens new possibilities on toxinology, studying an unknown biological material, and it characterizes a source of molecules with putative biotechnological applications.


Assuntos
Aranha Marrom Reclusa , Hemolinfa/química , Diester Fosfórico Hidrolases/química , Venenos de Aranha/química , Animais , Mordeduras e Picadas/patologia , Cromatografia em Camada Fina , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Filogenia
5.
Br J Cancer ; 91(2): 297-304, 2004 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15199390

RESUMO

The structural characteristics of mesoionic compounds, which contain distinct regions of positive and negative charges associated with a poly-heteroatomic system, enable them to cross cellular membranes and interact strongly with biomolecules. Potential biological applications have been described for mesoionic compounds. 1,3,4-Thiadiazolium mesoionic compound (MI-D), a new mesoionic compound, has been demonstrated to be extremely cytotoxic to B16-F10 murine melanoma cells when compared to fotemustine and dacarbazine, drugs of reference in melanoma treatment protocols, describing inhibition of tumours grown in vitro and in vivo. We now evaluate the effects of mesoionic compound MI-D on different human melanoma cell lines. The drug decreased the viability and proliferation of MEL-85, SK-MEL, A2058 and MEWO cell lines in vitro, showing a considerable cytotoxic activity on these human cells. Adhesion of MEL-85 cells was evaluated in the presence of the drug using different extracellular matrix (ECM) constituents. MI-D decreased MEL-85 adhesion to laminin, fibronectin and matrigel. The morphology and actin cytoskeleton organisation of MEL-85 cells were also modified on MI-D treatment. These results on human melanoma cell lines indicate that MI-D is a very encouraging drug against melanoma, a tumour that is extremely resistant to chemotherapy.


Assuntos
Cinamatos/farmacologia , Melanoma Experimental/patologia , Neoplasias Cutâneas/patologia , Tiazóis/farmacologia , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Combinação de Medicamentos , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Proteoglicanas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Tiadiazóis , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA