Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Microbiol ; 58(5)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32132187

RESUMO

Accurate detection of influenza A virus (IAV) is crucial for patient management, infection control, and epidemiological surveillance. The World Health Organization and the Centers for Disease Control and Prevention have recommended using the M gene as the diagnostic gene target for reverse-transcription-PCR (RT-PCR). However, M gene RT-PCR has reduced sensitivity for recent IAV due to novel gene mutations. Here, we sought to identify novel diagnostic targets for the molecular detection of IAV using long-read third-generation sequencing. Direct nanopore sequencing from 18 nasopharyngeal specimens and one saliva specimen showed that the 5' and 3' ends of the PB2 gene and the entire NS gene were highly abundant. Primers selected for PB2 and NS genes were well matched with seasonal or avian IAV gene sequences. Our novel PB2 and NS gene real-time RT-PCR assays showed limits of detection similar to or lower than that of M gene RT-PCR and achieved 100% sensitivity and specificity in the detection of A(H1N1), A(H3N2), and A(H7N9) in nasopharyngeal and saliva specimens. For 10 patients with IAV detected by M gene RT-PCR conversion in sequentially collected specimens, NS and/or PB2 gene RT-PCR was positive in 2 (20%) of the initial specimens that were missed by M gene RT-PCR. In conclusion, we have shown that PB2 or NS gene RT-PCRs are suitable alternatives to the recommended M gene RT-PCR for diagnosis of IAV. Long-read nanopore sequencing facilitates the identification of novel diagnostic targets.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Sequenciamento por Nanoporos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
2.
Ann Transl Med ; 5(18): 372, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29057232

RESUMO

The advent of targeted therapies has established new standards of care for defined molecular subsets of non-small cell lung cancer (NSCLC). Not only has this led to significant changes in the routine clinical management of lung cancer e.g., multiplexed genomic testing, but it has provided important principles and benchmarks for determining "actionability". At present, the clinical paradigms are most evolved for EGFR mutations and ALK rearrangements, where multiple randomized phase III trials have determined optimal treatment strategies in both treatment naïve and resistant settings. However, this may not always be feasible with low prevalence alterations e.g., ROS1 and BRAF mutations. Another emerging observation is that not all targets are equally "actionable", necessitating a rigorous preclinical, clinical and translational framework to prosecute new targets and drug candidates. In this review, we will cover the role of targeted therapies for NSCLC harbouring BRAF, MET, HER2 and RET alterations, all of which have shown promise in non-squamous non-small cell lung cancer (ns-NSCLC). We further review some early epigenetic targets in NSCLC, an area of emerging interest. With increased molecular segmentation of lung cancer, we discuss the upcoming challenges in drug development and implementation of precision oncology approaches, especially in light of the complex and rapidly evolving therapeutic landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA