Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Rep ; 14(1): 13250, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858426

RESUMO

This paper presents a security aware design methodology to design secure generalized likelihood ratio test (GLRT) hardware intellectual property (IP) core for electrocardiogram (ECG) detector against IP piracy and fraudulent claim of IP ownership threats. Integrating authentic (secure version) GLRT hardware IP core in the system-on-chip (SoC) of ECG detectors is paramount for reliable operation and estimation of ECG parametric data, such as Q wave, R wave and S wave (QRS) complex detection. A pirated GLRT hardware IP integrated into an ECG detector may result in an unreliable/erratic estimation of ECG parametric data that can be hazardous and fatal for the end patient. The proposed methodology presents an integrated design flow to secure micro GLRT and GLRT cascade hardware IP cores for the ECG detector, using the colored interval graph (CIG) framework based fingerprint biometric, during high level synthesis (HLS). The proposed approach integrates a fingerprint biometric based security constraint generation process for securing the GLRT hardware IP core. This paper also presents a secure register transfer level (RTL) datapath design corresponding to micro GLRT and GLRT cascade hardware IP cores with embedded IP vendor's fingerprint. The proposed secure GLRT hardware IP core embedded with fingerprint biometric achieves superior results in terms of probability of coincidence and tamper tolerance than other security approaches. More explicitly, the proposed approach reports a significantly lower value of probability of coincidence and stronger value for tamper tolerance. Further, the proposed approach incurs zero design cost overhead.

2.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776372

RESUMO

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Assuntos
Imageamento por Ressonância Magnética , Saimiri , Medula Espinal , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Feminino
3.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543954

RESUMO

Currently, vaccine development against different respiratory diseases is at its peak. It is of utmost importance to find suitajble adjuvants that can increase the potency of the vaccine candidates. This study aimed to determine the systemic and splenic immune mechanisms in mice models induced by anionic and cationic lipid adjuvants in the presence of the vaccine-candidate influenza antigen hemagglutinin (HA). In the presence of the HA antigen, the cationic adjuvant (N3) increased conventional dendritic cell 1 (cDC1) abundance with enhanced MHCI and CD80-CD86 costimulatory marker expression, and significantly higher CD8T and Th17 populations with enhanced interferon-gamma (IFNγ) expression in CD8T and CD4T populations. Conversely, the anionic adjuvant (L3) increased the cDC2 population percentage with significantly higher MHCII and DEC205 expression, along with an increase in the CD4T and regulatory T cell populations. The L3-treated group also exhibited higher percentages of activated B and plasma cell populations with significantly higher antigen-specific IgG and IgA titer and virus neutralization potential. While the anionic adjuvant induced significantly higher humoral responses than the cationic adjuvant, the latter influenced a significantly higher Th1/Th17 response. For customized vaccine development, it is beneficial to have alternative adjuvants that can generate differential immune responses with the same vaccine candidate antigen. This study will aid the selection of adjuvants based on their charges to improve specific immune response arms in the future development of vaccine formulation.

4.
Methods Cell Biol ; 184: 149-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555154

RESUMO

The functional importance of nitric oxide (NO) in the fields of immunology concerning its antimicrobial, anti-tumoral, anti-inflammatory, and immunosuppressive effects have made it inevitable to study its secretion from various cells. Nitrogen oxide synthase (NOS) is the enzyme responsible for synthesizing NO and its three isoforms function in a cell-dependent manner. NO is oxidized rapidly to Reactive nitrogen oxide species (RNOS) through which the roles of NO are being carried out. One of the major immune cells secreting NO is myeloid-derived suppressor cells (MDSCs). The function of these MDSCs in the suppression of T-cell proliferation as well as T-cell differentiation is found to be dependent on NO secretion. Apart from T-cell suppressive activity, NO is also known to interfere with natural killer (NK) cell functions. A convenient method to estimate NO secretion is by using Griess reagent named after Johann Peter Griess. In this method, NO reacts with the reagents to form a colored azo dye detectable using a microplate reader at a wavelength of 548nm. In this chapter, we summarized the detailed method of estimating NO from MDSCs by the Griess method.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Células Supressoras Mieloides/fisiologia , Óxido Nítrico , Linfócitos T , Proliferação de Células
5.
J Immunol Res ; 2023: 3111351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881338

RESUMO

Seasonal influenza vaccination has different implications on the immune response depending on the comorbidities. Diabetes is one such critical disease that increases the patient's susceptibility to influenza and suppresses vaccine efficacy and immunity. The sex of the individuals also plays a definitive role in the immune responses to both the vaccine and the infection. This study aims to understand the efficacy of the seasonal vaccine against influenza in diabetic groups and undergoing immune mechanisms in different sexes (females and males). In this study, we are reporting about a switching of the immune response of the infected and vaccinated diabetic females towards stronger Th1/Th17 responses with suppressed humoral immunity. They show increased cDC1, enhanced proinflammatory activities within T cells, CD8T activation, Th17 proliferation, and the majority of IgG2 antibody subtypes with reduced neutralization potential. Males with diabetes exhibit enhanced humoral Th2-immunity than the nondiabetic group. They exhibit higher cDC2, and DEC205 levels within them with an increase in plasma B lymphocytes, higher IgG1 subtypes in plasma cells, and influenza-hemagglutinin-specific IgG titer with stronger virus neutralization potential. Males with diabetes recovered better than the females as observed from the changes in their body weight. This study highlights the critical immune mechanisms and sex-specific swapping of their preferred immune response pathways against influenza after vaccination during diabetes. We propose a need for a sex-specific customized vaccine regimen to be implemented against influenza for individuals having diabetes to exploit the manifested strength and weakness in their protective immunity.


Assuntos
Diabetes Mellitus , Vacinas contra Influenza , Influenza Humana , Masculino , Feminino , Humanos , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Estações do Ano , Vacinação , Imunidade Humoral , Anticorpos Antivirais
6.
Sci Rep ; 13(1): 18189, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875563

RESUMO

Functional MRI (fMRI) of the spinal cord is an expanding area of research with potential to investigate neuronal activity in the central nervous system. We aimed to characterize the functional connectivity features of the human lumbar spinal cord using resting-state fMRI (rs-fMRI) at 3T, using region-based and data-driven analysis approaches. A 3D multi-shot gradient echo resting-state blood oxygenation level dependent-sensitive rs-fMRI protocol was implemented in 26 healthy participants. Average temporal signal-to-noise ratio in the gray matter was 16.35 ± 4.79 after denoising. Evidence of synchronous signal fluctuations in the ventral and dorsal horns with their contralateral counterparts was observed in representative participants using interactive, exploratory seed-based correlations. Group-wise average in-slice Pearson's correlations were 0.43 ± 0.17 between ventral horns, and 0.48 ± 0.16 between dorsal horns. Group spatial independent component analysis (ICA) was used to identify areas of coherent activity¸ and revealed components within the gray matter corresponding to anatomical regions. Lower-dimensionality ICA revealed bilateral components corresponding to ventral and dorsal networks. Additional separate ICAs were run on two subsets of the participant group, yielding two sets of components that showed visual consistency and moderate spatial overlap. This work shows feasibility of rs-fMRI to probe the functional features and organization of the lumbar spinal cord.


Assuntos
Substância Cinzenta , Medula Espinal , Animais , Humanos , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Corno Dorsal da Medula Espinal , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Voluntários Saudáveis , Encéfalo , Mapeamento Encefálico/métodos
7.
Cereb Cortex Commun ; 4(3): tgad018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753115

RESUMO

Resting-state fMRI based on analyzing BOLD signals is widely used to derive functional networks in the brain and how they alter during disease or injury conditions. Resting-state networks can also be used to study brain functional connectomes across species, which provides insights into brain evolution. The squirrel monkey (SM) is a non-human primate (NHP) that is widely used as a preclinical model for experimental manipulations to understand the organization and functioning of the brain. We derived resting-state networks from the whole brain of anesthetized SMs using Independent Component Analysis of BOLD acquisitions. We detected 15 anatomically constrained resting-state networks localized in the cortical and subcortical regions as well as in the white-matter. Networks encompassing visual, somatosensory, executive control, sensorimotor, salience and default mode regions, and subcortical networks including the Hippocampus-Amygdala, thalamus, basal-ganglia and brainstem region correspond well with previously detected networks in humans and NHPs. The connectivity pattern between the networks also agrees well with previously reported seed-based resting-state connectivity of SM brain. This study demonstrates that SMs share remarkable homologous network organization with humans and other NHPs, thereby providing strong support for their suitability as a translational animal model for research and additional insight into brain evolution across species.

8.
Int Immunopharmacol ; 123: 110671, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37494839

RESUMO

Regulatory effect of IL-6 on various immune cells plays a crucial role during experimental cerebral malaria pathogenesis. IL-6 neutralization can restore distorted ratios of myeloid dendritic cells and plasmacytoid dendritic cells as well as the balance between Th-17 and T-regulatory cells. IL-6 can also influence immune cells through classical and trans IL-6 signalling pathways. As trans IL-6 signalling is reportedly involved during malaria pathogenesis, we focused on studying the effects of trans IL-6 signalling blockade on various immune cell populations and how they regulate ECM progression. Results show that administration of sgp130Fc recombinant chimera protein lowers the parasitemia, increases the survivability of Plasmodium berghei ANKA infected mice, and restores the distorted ratios of M1/M2 macrophage, mDC/pDC, and Th-17/Treg. IL-6 trans signalling blockade has been found to affect both expansion of myeloid derived suppressor cells (MDSCs) and expression of inflammatory markers on them during Plasmodium berghei ANKA infection indicating that trans IL-6 signalling might regulate various immune cells and their function during ECM. In this work for the first time, we delineate the effect of sgp130Fc administration on influencing the immunological changes within the host secondary lymphoid organ during ECM induced by Plasmodium berghei ANKA infection.


Assuntos
Malária Cerebral , Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/patologia , Interleucina-6 , Macrófagos/patologia , Células Dendríticas , Plasmodium berghei , Camundongos Endogâmicos C57BL
9.
Magn Reson Imaging ; 102: 184-200, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343904

RESUMO

Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Traumatismos da Medula Espinal , Animais , Humanos , Imagem de Tensor de Difusão/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Modelos Animais
10.
Res Sq ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993492

RESUMO

Functional MRI studies of the brain have shown that blood-oxygenation-level-dependent (BOLD) signals are robustly detectable not only in gray matter (GM) but also in white matter (WM). Here, we report the detection and characteristics of BOLD signals in WM of spinal cord (SC) of squirrel monkeys. Tactile stimulus-evoked BOLD signal changes were detected in the ascending sensory tracts of SC using a General-Linear Model (GLM) as well as Independent Component Analysis (ICA). ICA of resting state signals identified coherent fluctuations from eight WM hubs which correspond closely with known anatomical locations of SC WM tracts. Resting state analyses showed that the WM hubs exhibited correlated signal fluctuations within and between SC segments in specific patterns that correspond well with the known neurobiological functions of WM tracts in SC. Overall, these findings suggest WM BOLD signals in SC show similar features as GM both at baseline and under stimulus conditions.

11.
Magn Reson Imaging ; 98: 76-82, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572323

RESUMO

BACKGROUND AND PURPOSE: Differentiation of pilocytic astrocytoma (PA) from glioblastoma is difficult using conventional MRI parameters. The purpose of this study was to differentiate these two similar in appearance tumors using quantitative T1 perfusion MRI parameters combined under a machine learning framework. MATERIALS AND METHODS: This retrospective study included age/sex and location matched 26 PA and 33 glioblastoma patients with tumor histopathological characterization performed using WHO 2016 classification. Multi-parametric MRI data were acquired at 3 T scanner and included T1 perfusion and DWI data along with conventional MRI images. Analysis of T1 perfusion data using a leaky-tracer-kinetic-model, first-pass-model and piecewise-linear-model resulted in multiple quantitative parameters. ADC maps were also computed from DWI data. Tumors were segmented into sub-components such as enhancing and non-enhancing regions, edema and necrotic/cystic regions using T1 perfusion parameters. Enhancing and non-enhancing regions were combined and used as an ROI. A support-vector-machine classifier was developed for the classification of PA versus glioblastoma using T1 perfusion MRI parameters/features. The feature set was optimized using a random-forest based algorithm. Classification was also performed between the two tumor types using the ADC parameter. RESULTS: T1 perfusion parameter values were significantly different between the two groups. The combination of T1 perfusion parameters classified tumors more accurately with a cross validated error of 9.80% against that of ADC's 17.65% error. CONCLUSION: The approach of using quantitative T1 perfusion parameters based upon a support-vector-machine classifier reliably differentiated PA from glioblastoma and performed better classification than ADC.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Estudos Retrospectivos , Astrocitoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Perfusão , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
12.
Mol Immunol ; 152: 240-254, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395532

RESUMO

Th9, a new subgroup of CD4+T cells is characterized by its specific cytokine IL-9, is a critical factor in allergic diseases, cancers and parasitic infections. This study aimed to explore the potential roles of Th9 cells in the immunopathogenesis of ECM. In splenocytes sourced from uninfected, PbA and Py infected mice, Th9 cells were characterised by flow cytometry, cell sorting and qPCR. Enhancement of CD4+IL-9+ (Th9) cells were observed in both the infections, which corroborated with increased expression of the differentiating transcription factors. Moreover, crucial cytokine receptors (IL-4R, TGF-ßR, IL-6R) as well as chemokine receptors (CCR3, CCR6 and CCR7) and activation marker (CD96), demonstrated elevation upon PbA infection in splenic Th9 cells. Furthermore, Neutralization of IL-9 along with IL-6 enhanced host survivability, reduced mean neurological score of ECM. However, anti- IL-9 treatment also down regulated frequency of Th17 cells, and its transcription factors pSTAT3, RORγT along with depleted Il-1ß and Il-6 expression. In sum, understanding how IL-9 producing CD4+ T-cells can alter Th17/Treg ratio and by that modulate host's immune response, could pave the way for developing immunomodulatory interventions against cerebral malaria.


Assuntos
Interleucina-9 , Malária Cerebral , Células Th17 , Animais , Camundongos , Interleucina-6/imunologia , Interleucina-9/imunologia , Malária Cerebral/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fatores de Transcrição/imunologia
13.
Cytokine ; 155: 155910, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594680

RESUMO

Myeloid derived suppressor cells (MDSCs) are a group of heterogeneous cell populations that can suppress T cell responses. Various aspects of MDSCs in regulating immune responses in several cancer and infectious diseases have been reported till date. But the role and regulation of MDSCs have not been systematically studied in the context of malaria. This study depicts the phenotypic and functional characteristics of splenic MDSCs and how they regulate Th-17 mediated immune response during Experimental Cerebral Malaria (ECM). Flow cytometric analysis reveals that MDSCs in the spleen and bone marrow expand at 8 dpi during ECM. Among subtypes of MDSCs, PMN-MDSCs show significant expansion in the spleen but M-MDSCs remain unaltered. Functional analysis of sorted MDSCs from spleens of Plasmodium berghei ANKA (PbA) infected mice shows suppressive nature of these cells and high production of Nitric oxide (NO). Besides, MDSCs were also found to express various inflammatory markers during ECM suggesting the M1 type phenotype of these cells. In-vivo depletion of MDSCs by the use of Anti Gr-1 increases mice survival but doesn't significantly alter the parasitemia. Previously, it has been reported that Treg/Th-17 balance in the spleen is skewed towards Th-17 during ECM. Depletion of MDSCs was found to regulate Th-17 percentages to homeostatic levels and subvert various inflammatory changes in the spleen. Among different factors, IL-6 was found to play an important role in the expansion of MDSCs and expression of inflammatory markers on MDSCs in a STAT3-dependent manner. These findings provide a unique insight into the role of IL-6 in the expansion of the MDSC population which causes inflammatory changes and increased Th-17 responses during ECM.


Assuntos
Interleucina-6 , Malária Cerebral , Células Supressoras Mieloides , Células Th17 , Animais , Interleucina-6/imunologia , Malária Cerebral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Baço , Células Th17/imunologia
14.
Trends Biotechnol ; 40(10): 1195-1212, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35450779

RESUMO

Despite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions. Nanovaccines necessitate a thorough understanding of the immunostimulatory effect of these nanotools. We present a comprehensive description of strategies in which nanotools have been used to elicit an immune response and provide a perspective on how nanotechnology can lead to future personalized nanovaccines.


Assuntos
Nanopartículas , Vacinas , Imunidade , Nanotecnologia
15.
Vaccines (Basel) ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35455253

RESUMO

In this preclinical two-dose mucosal immunization study, using a combination of S1 spike and nucleocapsid proteins with cationic (N3)/or anionic (L3) lipids were investigated using an intranasal delivery route. The study showed that nasal administration of low amounts of antigens/adjuvants induced a primary and secondary immune response in systemic IgG, mIL-5, and IFN-gamma secreting T lymphocytes, as well as humoral IgA in nasal and intestinal mucosal compartments. It is believed that recipients will benefit from receiving a combination of viral antigens in promoting a border immune response against present and evolving contagious viruses. Lipid adjuvants demonstrated an enhanced response in the vaccine effect. This was seen in the significant immunogenicity effect when using the cationic lipid N3. Unlike L3, which showed a recognizable effect when administrated at a slightly higher concentration. Moreover, the findings of the study proved the efficiency of an intranasally mucosal immunization strategy, which can be less painful and more effective in enhancing the respiratory tract immunity against respiratory infectious diseases.

16.
Vaccines (Basel) ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35455254

RESUMO

The use of nanoparticles for developing vaccines has become a routine process for researchers and pharmaceutical companies. Gold nanoparticles (GNPs) are chemical inert, have low toxicity, and are easy to modify and functionalize, making them an attractive choice for nanovaccine development. GNPs are modified for diagnostics and detection of many pathogens. The biocompatibility and biodistribution properties of GNPs render them ideal for use in clinical settings. They have excellent immune modulatory and adjuvant properties. They have been used as the antigen carrier for the delivery system to a targeted site. Tagging them with antibodies can direct the drug or antigen-carrying GNPs to specific tissues or cells. The physicochemical properties of the GNP, together with its dynamic immune response based on its size, shape, surface charge, and optical properties, make it a suitable candidate for vaccine development. The clear outcome of modulating dendritic cells, T and B lymphocytes, which trigger cytokine release in the host, indicates GNPs' efficiency in combating pathogens. The high titer of IgG and IgA antibody subtypes and their enhanced capacity to neutralize pathogens are reported in multiple studies on GNP-based vaccine development. The major focus of this review is to illustrate the role of GNPs in developing nanovaccines against multiple infectious agents, ranging from viruses to bacteria and parasites. Although the use of GNPs has its shortcomings and a low but detectable level of toxicity, their benefits warrant investing more thought and energy into the development of novel vaccine strategies.

17.
Neuroimage ; 240: 118391, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271158

RESUMO

Spontaneous fluctuations of Blood Oxygenation-Level Dependent (BOLD) MRI signal in a resting state have previously been detected and analyzed to describe intrinsic functional networks in the spinal cord of rodents, non-human primates and human subjects. In this study we combined high resolution imaging at high field with data-driven Independent Component Analysis (ICA) to i) delineate fine-scale functional networks within and between segments of the cervical spinal cord of monkeys, and also to ii) characterize the longitudinal effects of a unilateral dorsal column injury on these networks. Seven distinct functional hubs were revealed within each spinal segment, with new hubs detected at bilateral intermediate and gray commissure regions in addition to the bilateral dorsal and ventral horns previously reported. Pair-wise correlations revealed significantly stronger connections between hubs on the dominant hand side. Unilateral dorsal-column injuries disrupted predominantly inter-segmental rather than intra-segmental functional connectivities as revealed by correlation strengths and graph-theory based community structures. The effects of injury on inter-segmental connectivity were evident along the length of the cord both below and above the lesion region. Connectivity strengths recovered over time and there was revival of inter-segmental communities as animals recovered function. BOLD signals of frequency 0.01-0.033 Hz were found to be most affected by injury. The results in this study provide new insights into the intrinsic functional architecture of spinal cord and underscore the potential of functional connectivity measures to characterize changes in networks after an injury and during recovery.


Assuntos
Conectoma , Traumatismos da Medula Espinal/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Animais
18.
PLoS One ; 15(10): e0240513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33064765

RESUMO

OBJECTIVE: In vivo functional changes in white matter during the progression of Alzheimer's disease (AD) have not been previously reported. Our objectives are to measure changes in white matter functional connectivity (FC) in an elderly population undergoing cognitive decline as AD develops, to establish their relationship to neuropsychological scores of cognitive abilities, and to assess the performance in prediction of AD using white matter FC measures as features. METHODS: Analyses were conducted using resting state functional MRI and neuropsychological data from 383 ADNI participants, including 136 cognitive normal (CN) controls, 46 with significant memory concern, 83 with early mild cognitive impairment (MCI), 37 with MCI, 46 with late MCI, and 35 with AD dementia. FC metrics between segregated white matter tracts and discrete gray matter volumes or between white matter tracts were quantitatively analyzed and characterized, along with their relationships to 6 cognitive measures. Finally, supervised machine learning was implemented on white matter FCs to classify the participants and performance of the classification was evaluated. RESULTS: Significant decreases in FC measures were found in white matter with prominent, specific, regional deficits appearing in late MCI and AD dementia patients from CN. These changes significantly correlated with neuropsychological measurements of impairments in cognition and memory. The sensitivity and specificity of distinguishing AD dementia and CN using white matter FCs were 0.83 and 0.81 respectively. CONCLUSIONS AND RELEVANCE: The white matter FC decreased in late MCI and AD dementia patients compared to CN participants, and this decrease was correlated with cognitive measures. White matter FC is valuable in the prediction of AD. All these findings suggest that white matter FC may be a promising avenue for understanding functional impairments in white matter tracts during AD progression.


Assuntos
Doença de Alzheimer/psicologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Estudos de Casos e Controles , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Sensibilidade e Especificidade , Aprendizado de Máquina Supervisionado , Substância Branca/diagnóstico por imagem
19.
Microb Pathog ; 147: 104289, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32693118

RESUMO

Splenomegaly, a major symptom in Plasmodium infection, is extensively studied for its immunopathological role in mice malaria model infected with Plasmodium berghei ANKA. The status of autophagic regulation in hosts in malaria pathogenesis remains unreported till date. This study demonstrated the autophagy, proteasomal degradation and NRF2-KEAP1 antioxidant pathway status in the host during Plasmodium infection taking murine spleen as our organ of interest. Initial staining and autophagic gene expression indicate a possibility of autophagic pathway activation. Although the conversion of LC3A to LC3B and lysosome-autophagosome fusion increases, the final degradation step remains incomplete. Resultant upregulation of p62 and its altered phosphorylated status enhances its binding to keap1 causing NRF2 translocation to the nucleus. NRF2 act as transcription factor upregulating p62 level itself leading to an autoinduction loop of p62 expression. Interestingly, enhancement of P62 interaction with proteasome subunit RPT1 indicates a possible role in transporting ubiquitinated cargo to proteasome complex. Ubiquitination level increased with subsequent upregulation of all three modes of proteasomal degradation i.e trypsin-like, caspase-like and especially chymotrypsin-like. Sqstm1/p62 plays a critical central role in regulating autophagy, proteasomal degradation, and NRF2-KEAP1 pathway. The incomplete autophagic flux in the final step may be a key therapeutic target, as autophagic degradation and subsequent pathogenic peptide presentation is of utmost necessity for downstream immune response.


Assuntos
Malária , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Baço/metabolismo
20.
Microbes Infect ; 21(10): 475-484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185303

RESUMO

Splenic plasmacytoid dendritic cells (pDC) possess the capability to harbor live replicative Plasmodium parasite. Isolated splenic pDC from infected mice causes malaria when transferred to naïve mice. Incomplete autophagic degradation might cause poor antigen processing and poor immune response. Induction of autophagic flux by rapamycin treatment led to better prognosis by boosting pDC centered immune response against the pathogen. Splenic pDC from rapamycin-treated infected mice, caused less parasitemia in naïve mice. The downregulation of adhesion with unaltered phagocytic potential of the cells post autophagic induction restricted excessive parasite burden within them. Rapamycin-treated pDC played a better role in antigen presentation. They showed higher expression of co-stimulatory molecules CD80, CD86, DEC205, MHCI. Rapamycin-treated pDC induced CD28 expression on CD8+ T cells and suppressed FasL level. This cells also influenced differentiation of effector, memory T cell population. The increase in IL10: TNFα ratio, Treg: Th17 ratio and lowering of myeloid DC: plasmacytoid DC ratio was observed. It shifted the overaggressive inflammation mediated Th1 pathway that is reported to incur host damage, to a better well-balanced cytokine profile exhibiting Th2 pathway. Autophagic flux induction within pDC proved to be beneficial in combating malarial pathogenicity.


Assuntos
Autofagia/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Malária Cerebral/imunologia , Baço/imunologia , Animais , Autofagia/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Adesão Celular/efeitos dos fármacos , Citocinas/imunologia , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Malária Cerebral/tratamento farmacológico , Malária Cerebral/patologia , Masculino , Camundongos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA