RESUMO
Photodynamic Therapy (PDT) is an effective treatment modality for cancers, with Protoporphyrin IX (PPIX)-based PDT being the most widely used to treat cancers in patients. However, PDT is limited to superficial, thin (few mm in depth) lesions that can be accessed by visible wavelength light. Interstitial light-delivery strategies have been developed to treat deep-seated lesions (i.e. prostate cancer). The most promising of these are X-ray-induced scintillation nanoparticles, which have shown potential benefits for PDT of deep-seated tumors. Herein, the design and use of a new nanoscintillator-based radiation-activated PDT (radioPDT) system is investigated in the treatment of deep-seated tumors. Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanospheres were loaded with a scintillator (LaF3:Ce3+) and photosensitizer (PPIX) to effect radioPDT. UV-Vis spectroscopy and electron microscopy studies demonstrated efficient encapsulation of nanoscintillators and PPIX (>90% efficiency) into the PEG-PLGA nanospheres. The nanoparticles were uniform in size and approximately 100 nm in diameter. They were highly stable and functional for up to 24 h under physiological conditions and demonstrated slow release kinetics. In vitro and in vivo toxicity studies showed no appreciable drug toxicity to human skin fibroblast (GM38), prostate cancer cells (PC3), and to C57/BL mice. Cell uptake studies demonstrated accumulation of the nanoparticles in the cytoplasm of PC3 cells. When activated, fluorescent resonant energy transfer (FRET) was evident via fluorescent spectroscopy and singlet oxygen yield. Determination of stability revealed that the nanoparticles were stable for up to 4 weeks. The nanoparticle production was scaled-up with no change in properties. This nanoparticle represents a unique, optimally designed therapeutic and diagnostic agent (theranostic) agent for radioPDT with characteristics capable of potentially augmenting radiotherapy for deep-seated tumors and integrating into current cancer radiotherapy.
Assuntos
Nanopartículas , Nanosferas , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes , Poliésteres , PolietilenoglicóisRESUMO
The capability to slow ice growth and recrystallization is compulsory in the cryopreservation of cells and tissues to avoid injuries associated with the physical and chemical responses of freezing and thawing. Cryoprotective agents (CPAs) have been used to restrain cryoinjury and improve cell survival, but some of these compounds pose greater risks for the clinical application of cryopreserved cells due to their inherent toxicity. Trehalose is known for its unique physicochemical properties and its interaction with the phospholipids of the plasma membrane, which can reduce cell osmotic stress and stabilized the cryopreserved cells. Nonetheless, there has been a shortage of relevant studies on the synthesis of trehalose-based CPAs. We hereby report the synthesis and evaluation of a trehalose-based polymer and hydrogel and its use as a cryoprotectant and three-dimensional (3D) cell scaffold for cell encapsulation and organoid production. In vitro cytotoxicity studies with the trehalose-based polymers (poly(Tre-ECH)) demonstrated biocompatibility up to 100 mg/mL. High post-thaw cell membrane integrity and post-thaw cell plating efficiencies were achieved after 24 h of incubation with skin fibroblast, HeLa (cervical), and PC3 (prostate) cancer cell lines under both controlled-rate and ultrarapid freezing protocols. Differential scanning calorimetry and a splat cooling assay for the determination of ice recrystallization inhibition activity corroborated the unique properties of these trehalose-based polyethers as cryoprotectants. Furthermore, the ability to form hydrogels as 3D cell scaffolds encourages the use of these novel polymers in the development of cell organoids and cryopreservation platforms.
Assuntos
Criopreservação , Trealose , Sobrevivência Celular , Crioprotetores/farmacologia , Congelamento , Humanos , Masculino , Trealose/farmacologiaRESUMO
There is considerable interest in the cryopreservation in 3D cell culture, as structurally preserving intact cells and tissues is critical in utilizing these systems to promote cell differentiation and tissue organization. Temperature-responsive physical gels and zwitterionic polymers are useful materials as 3D scaffolds for cell culture which may also provide cryoprotection to the composite cells. Nevertheless, there has been a lack of relevant data for polymer systems that have both of these properties. In this study, highly biocompatible triblock copolymers were examined for their effectiveness both as gelators and as cryo-protectants. The triblock copolymers were synthesized with 2-methacryloyloxyethyl phosphorylcholine (MPC) and di(ethylene glycol) methyl ether methacrylate (DEGMA) via atom transfer radical polymerization (PDEGMA113-b-PMPC243-b-PDEGMA113). ABA triblock copolymers composed of hydrophilic "B" block and temperature responsive "A" block could form physical gels above their lower critical solution temperatures (LCST). PDEGMA113-b-PMPC243-b-PDEGMA113 triblock copolymer exhibited the LCST derived from DEGMA and assembled in micellar structures forming physical gels above the LCST. The mechanical properties of the physical gels were evaluated by rheological tests, and the low toxicity of PDEGMA113-b-PMPC243-b-PDEGMA113 was confirmed by MTT assay. Interestingly, the triblock copolymer showed ice recrystallization inhibition (IRI) activity which was determined to be suitable for the cryopreservation of several cell lines. In vitro studies were conducted to demonstrate the cryo-protectant properties and the formation of two and three-dimensional (2D/3D) cell culture scaffolds with high biocompatibility. This stimuli-responsive gelator polymers can therefore be useful for cryopreservation of different cells models, and a promising material for 3D cell culture.
RESUMO
Nanoparticles owing to their unique physico-chemical properties have found its application in various biological processes, including metabolic pathways taking place within the body. This review tried to focus the involvement of nanoparticles in metabolic pathways and its influence in the energy metabolism, a fundamental criteria for the survival and physiological activity of living beings. The human body utilizes energy derived from food resources through a series of biochemical reactions involving several enzymes, co-factors (metals, non-metals, vitamins etc.) through the metabolic pathways (glycolysis, tri carboxylic acid cycle, oxidative phosphorylation, electron transport chain, etc.) in cellular system. Energy metabolism is also involved in the immune networking of the body for self defence and against pathophysiology. The immune system comprises of different cells and tissues, bioactive molecules for self defence and to fight against diseases. In the recent times, it has been reported through in vivo and in vitro studies that nanoparticles have direct influence on body's immune functions, and can modulate immunity by either suppressing or enhancing it. A comprehensive overview of nanoparticles and its involvement in immune function of the body in normal and pathophysiological conditions has been discussed. Considering these perspectives on nanoparticle interaction another important area which has been highlighted is the biosafety issues which are necessary before therapeutic applications. It is expected that development of physiologically compatible nanoparticles controlling energy metabolic processes, immune functions may show new dimension in the pathophysiology linked with energy and immunity.
Assuntos
Metabolismo Energético/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Nanopartículas/efeitos adversos , Animais , HumanosRESUMO
Nanotechnology has been setting benchmarks for the last two decades, but the origins of this technology reach back to ancient history. Today, nanoparticles of both metallic and non-metallic origin are under research and development for applications in various fields of biology/therapeutics. Physiologically important metals are of concern because they are compatible with the human system in terms of absorption, assimilation, excretion, and side effects. There are several physiologically inorganic metals that are present in the human body with a wide range of biological activities. Some of these metals are magnesium, chromium, manganese, iron, cobalt, copper, zinc, selenium and molybdenum. These metals are synthesized in the form of nanoparticles by different physical and chemical methods. Physiologically important nanoparticles are currently under investigation for their bio-medical applications as well as for therapeutics. Along with the applicative aspects of nanoparticles, another domain that is of great concern is the risk assessment of these nanoparticles to avoid unnecessary hazards. It has been seen that these nanoparticles have been shown to possess toxicity in biological systems. Conventional physical and chemical methods of metal nanoparticle synthesis may be one possible reason for nanoparticle toxicity that can be overcome by synthesis of nanoparticles from biological sources. This review is an attempt to establish metal nanoparticles of physiological importance to be the best candidates for future nanotechnological tools and medicines, owing to the acceptability and safety in the human body. This can only be successful if these particles are synthesized with a better biocompatibility and low or no toxicity.
Assuntos
Materiais Biocompatíveis/toxicidade , Medicina Baseada em Evidências , Nanopartículas Metálicas/toxicidade , Animais , HumanosRESUMO
With emerging use of gold nanopaticles (GNP) in biomedical science now concern lies upon the fact that how this nonanparticles interact with biological systems both in vivo and in vitro. In this study effects of GNP (50 nm) were investigated in animal models after acute and chronic exposure. For acute studies GNP was administered intravenously at three doses and urine and blood samples were collected for urinary and haematological analysis at regular time intervals. For chronic studies GNP was administered intra-peritoneally at two dose levels and urine, blood, serum and tissue samples were collected for urinary, haematological, serum biochemical and histo-pathological analysis at regular intervals. Acute exposure revealed significant increase in WBC count at all the three dose levels and significant dose-dependent increase in RBC count and Hb%. Chronic exposure at 2 mg/kg dose level showed high toxicity. Significant changes in physical, morphological, WBC count and Hb% were observed after chronic exposure for multiple days. Histo-pathological studies indicated detrimental tissue histological changes in chronic animal models. Therefore, the above studies indicate that both acute and chronic GNP exposure exhibits potential physiological changes within animal system.
Assuntos
Nanopartículas Metálicas/toxicidade , Modelos Animais , Animais , Relação Dose-Resposta a Droga , Contagem de Eritrócitos , Contagem de Leucócitos , Masculino , Camundongos , Microscopia Eletrônica de TransmissãoRESUMO
Nano-medical approaches to develop drugs have attracted much attention in different arenas to design nanoparticle conjugates for better efficacy of the potential bio-molecules. A group of promising candidates of this category would be venom-toxins of animal origin of potential medicinal value. Traditional systems of medicine as well as folklores mention the use of venom-toxins for the treatment of various diseases. Research has led to scientific validation of medicinal applications of venoms-toxins and many active constituents derived from venoms-toxins are already in clinical use or under clinical trial. Nanomedicine is an emerging field of medicine where nanotechnology is used to develop molecules of nano-scale dimension, so that these molecules can be taken up by the cells more easily and have better efficacy, as compared to large molecules that may tend to get eliminated. This review will focus on some of the potential venoms and toxins along with nanoparticle conjugated venom-toxins of snakes, amphibians, scorpions and bees, etc., for possible therapeutic clues against emerging diseases.