Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(10): 230387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37885992

RESUMO

Proterosuchidae represents the oldest substantial diversification of Archosauromorpha and plays a key role in understanding the biotic recovery after the end-Permian mass extinction. Proterosuchidae was long treated as a wastebasket taxon, but recent revisions have reduced its taxonomic content to five valid species from the latest Permian of Russia and the earliest Triassic (Induan) of South Africa and China. In addition to these occurrences, several isolated proterosuchid bones have been reported from the Induan Panchet Formation of India for over 150 years. Following the re-study of historical specimens and newly collected material from this unit, we erect the new proterosuchid species Samsarasuchus pamelae, which is represented by most of the presacral vertebral column. We also describe cf. proterosuchid and proterosuchid cranial, girdle and limb bones that are not referred to Samsarasuchus pamelae. Phylogenetic analyses recovered Samsarasuchus pamelae within the new proterosuchid clade Chasmatosuchinae. The taxonomic diversity of Proterosuchidae is substantially expanded here, with at least 11 nominal species and several currently unnamed specimens, and a biogeographical range encompassing present-day South Africa, China, Russia, India, Brazil, Uruguay and Australia. This indicates a broader taxonomic, phylogenetic and biogeographic diversification of Proterosuchidae than previously thought in the aftermath of the end-Permian mass extinction.

2.
J Anat ; 239(5): 983-1038, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176132

RESUMO

Present-day crocodylians exhibit a remarkably akinetic skull with a highly modified braincase. We present a comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project. The quadrate is rigidly fixed by multiple contacts with most braincase elements. The parabasisphenoid is sutured to the pterygoids (palate) and the quadrate (suspensorium); as a result, the basipterygoid joint is completely immobilized. The prootic is reduced and externally concealed by the quadrate. It has a verticalized buttress that participates in the canal for the temporal vasculature. The ventrolateral processes of the otoccipitals completely cover the posteroventral region of the braincase, enclose the occipital nerves and blood vessels in narrow bony canals and also provide additional sutural contacts between the braincase elements and further consolidate the posterior portion of the crocodylian skull. The otic capsule of crocodylians has a characteristic cochlear prominence that corresponds to the lateral route of the perilymphatic sac. Complex internal structures of the otoccipital (extracapsular buttress) additionally arrange the neurovascular structures of the periotic space of the cranium. Most of the braincase elements of crocodylians are excavated by the paratympanic pneumatic sinuses. The braincase in various extant crocodylians has an overall similar structure with some consistent variation between taxa. Several newly observed features of the braincase are present in Gavialis gangeticus and extant members of Crocodylidae to the exclusion of alligatorids: the reduced exposure of the prootic buttress on the floor of the temporal canal, the sagittal nuchal crest of the supraoccipital projecting posteriorly beyond the postoccipital processes and the reduced paratympanic pneumaticity. The most distinctive features of the crocodylian braincase (fixed quadrate and basipterygoid joint, consolidated occiput) evolved relatively rapidly at the base of Crocodylomorpha and accompanied the initial diversification of this clade during the Late Triassic and Early Jurassic. We hypothesize that profound rearrangements in the individual development of the braincases of basal crocodylomorphs underlie these rapid evolutionary modifications. These rearrangements are likely reflected in the embryonic development of extant crocodylians and include the involvement of neomorphic dermal anlagen in different portions of the developing chondrocranium, the extensive ossification of the palatoquadrate cartilage as a single expanded quadrate and the anteromedial inclination of the quadrate.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Animais , Cabeça , Osteogênese , Crânio/anatomia & histologia
3.
R Soc Open Sci ; 7(12): 201089, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489266

RESUMO

Erythrosuchidae were large-bodied, quadrupedal, predatory archosauriforms that dominated the hypercarnivorous niche in the aftermath of the Permo-Triassic mass extinction. Garjainia, one of the oldest members of the clade, is known from the late Olenekian of European Russia. The holotype of Garjainia prima comprises a well-preserved skull, but highly incomplete postcranium. Recent taxonomic reappraisal demonstrates that material from a bone bed found close to the type locality, previously referred to as 'Vjushkovia triplicostata', is referable to G. prima. At least, seven individuals comprising cranial remains and virtually the entire postcranium are represented, and we describe this material in detail for the first time. An updated phylogenetic analysis confirms previous results that a monophyletic Garjainia is the sister taxon to a clade containing Erythrosuchus, Shansisuchus and Chalishevia. Muscle scars on many limb elements are clear, allowing reconstruction of the proximal locomotor musculature. We calculate the body mass of G. prima to have been 147-248 kg, similar to that of an adult male lion. Large body size in erythrosuchids may have been attained as part of a trend of increasing body size after the Permo-Triassic mass extinction and allowed erythrosuchids to become the dominant carnivores of the Early and Middle Triassic.

4.
R Soc Open Sci ; 6(11): 191289, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827861

RESUMO

Erythrosuchidae are a globally distributed and important group of apex predators that occupied Early and Middle Triassic terrestrial ecosystems following the Permo-Triassic mass extinction. The stratigraphically oldest known genus of Erythrosuchidae is Garjainia Ochev, 1958, which is known from the late Early Triassic (late Olenekian) of European Russia and South Africa. Two species of Garjainia have been reported from Russia: the type species, Garjainia prima Ochev, 1958, and 'Vjushkovia triplicostata' von Huene, 1960, which has been referred to Garjainia as either congeneric (Garjainia triplicostata) or conspecific (G. prima). The holotype of G. prima has received relatively extensive study, but little work has been conducted on type or referred material attributed to 'V. triplicostata'. However, this material includes well-preserved fossils representing all parts of the skeleton and comprises seven individuals. Here, we provide a comprehensive description and review of the cranial anatomy of material attributed to 'V. triplicostata', and draw comparisons with G. prima. We conclude that the two Russian taxa are indeed conspecific, and that minor differences between them result from a combination of preservation or intraspecific variation. Our reassessment therefore provides additional information on the cranial anatomy of G. prima. Moreover, we quantify relative head size in erythrosuchids and other early archosauromorphs in an explicit phylogenetic context for the first time. Our results show that erythrosuchids do indeed appear to have disproportionately large skulls, but that this is also true for other early archosauriforms (i.e. proterosuchids), and may reflect the invasion of hypercarnivorous niches by these groups following the Permo-Triassic extinction.

5.
Nature ; 544(7651): 484-487, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28405026

RESUMO

The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.


Assuntos
Aves/classificação , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Filogenia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/classificação , Animais , Aves/anatomia & histologia , Membro Posterior/anatomia & histologia , Esqueleto/anatomia & histologia , Tanzânia
6.
PLoS One ; 9(11): e111154, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386937

RESUMO

A new species of the erythrosuchid archosauriform reptile Garjainia Ochev, 1958 is described on the basis of disarticulated but abundant and well-preserved cranial and postcranial material from the late Early Triassic (late Olenekian) Subzone A of the Cynognathus Assemblage Zone of the Burgersdorp Formation (Beaufort Group) of the Karoo Basin of South Africa. The new species, G. madiba, differs from its unique congener, G. prima from the late Olenekian of European Russia, most notably in having large bony bosses on the lateral surfaces of the jugals and postorbitals. The new species also has more teeth and a proportionately longer postacetabular process of the ilium than G. prima. Analysis of G. madiba bone histology reveals thick compact cortices comprised of highly vascularized, rapidly forming fibro-lamellar bone tissue, similar to Erythrosuchus africanus from Subzone B of the Cynognathus Assemblage Zone. The most notable differences between the two taxa are the predominance of a radiating vascular network and presence of annuli in the limb bones of G. madiba. These features indicate rapid growth rates, consistent with data for many other Triassic archosauriforms, but also a high degree of developmental plasticity as growth remained flexible. The diagnoses of Garjainia and of Erythrosuchidae are addressed and revised. Garjainia madiba is the geologically oldest erythrosuchid known from the Southern Hemisphere, and demonstrates that erythrosuchids achieved a cosmopolitan biogeographical distribution by the end of the Early Triassic, within five million years of the end-Permian mass extinction event. It provides new insights into the diversity of the Subzone A vertebrate assemblage, which partially fills a major gap between classic 'faunal' assemblages from the older Lystrosaurus Assemblage Zone (earliest Triassic) and the younger Subzone B of the Cynognathus Assemblage Zone (early Middle Triassic).


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/irrigação sanguínea , Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Répteis/classificação , Animais , Paleontologia , África do Sul , Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA