Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pers Med ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793063

RESUMO

Background: KEYNOTE-522 resulted in FDA approval of the immune checkpoint inhibitor pembrolizumab in combination with neoadjuvant chemotherapy for patients with early-stage, high-risk, triple-negative breast cancer (TNBC). Unfortunately, pembrolizumab is associated with several immune-related adverse events (irAEs). We aimed to identify potential tumor microenvironment (TME) biomarkers which could predict patients who may attain pathological complete response (pCR) with chemotherapy alone and be spared the use of anti-PD-1 immunotherapy. Methods: Comprehensive immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on matched FFPE tumor samples from 22 stage I-III TNBC patients (14 patients treated with neoadjuvant chemotherapy alone (NAC) and 8 treated with neoadjuvant chemotherapy combined with pembrolizumab (NAC+I)). Results: Differential gene expression analysis revealed that in the NAC group, IL12B and IL13 were both significantly associated with pCR. In the NAC+I group, LCK and TP63 were significantly associated with pCR. Patients in both treatment groups exhibiting pCR tended to have greater tumor inflammation than non-pCR patients. In the NAC+I group, patients with pCR tended to have greater cell proliferation and higher PD-L1 expression, while in the NAC group, patients with pCR tended to have lower cancer testis antigen expression. Additionally, the NAC+I group trended toward a lower relative dose intensity averaged across all chemotherapy drugs, suggesting that more dose reductions or treatment delays occurred in the NAC+I group than the NAC group. Conclusions: A comprehensive understanding of immunologic factors could potentially predict pCR to chemotherapy alone, enabling the avoidance of the unnecessary treatment of these patients with checkpoint inhibitors.

2.
J Transl Med ; 22(1): 141, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326843

RESUMO

BACKGROUND: Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS: Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS: The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS: CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno B7-H1/metabolismo , Cetrimônio/uso terapêutico , Estudos Retrospectivos , Testículo/química , Testículo/metabolismo , Testículo/patologia , Antígenos de Neoplasias , Biomarcadores Tumorais/genética
3.
Sci Rep ; 13(1): 17604, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848457

RESUMO

Lung adenocarcinoma (LUAD) is the predominant type of lung cancer in the U.S. and exhibits a broad variety of behaviors ranging from indolent to aggressive. Identification of the biological determinants of LUAD behavior at early stages can improve existing diagnostic and treatment strategies. Extracellular matrix (ECM) remodeling and cancer-associated fibroblasts play a crucial role in the regulation of cancer aggressiveness and there is a growing need to investigate their role in the determination of LUAD behavior at early stages. We analyzed tissue samples isolated from patients with LUAD at early stages and used imaging-based biomarkers to predict LUAD behavior. Single-cell RNA sequencing and histological assessment showed that aggressive LUADs are characterized by a decreased number of ADH1B+ CAFs in comparison to indolent tumors. ADH1B+ CAF enrichment is associated with distinct ECM and immune cell signatures in early-stage LUADs. Also, we found a positive correlation between the gene expression of ADH1B+ CAF markers in early-stage LUADs and better survival. We performed TCGA dataset analysis to validate our findings. Identified associations can be used for the development of the predictive model of LUAD aggressiveness and novel therapeutic approaches.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Síndrome de DiGeorge , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Agressão , Neoplasias Pulmonares/genética , Prognóstico , Biomarcadores Tumorais/genética
4.
JTO Clin Res Rep ; 4(9): 100504, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674811

RESUMO

Introduction: Lung cancer is the deadliest cancer in the United States and worldwide, and lung adenocarcinoma (LUAD) is the most prevalent histologic subtype in the United States. LUAD exhibits a wide range of aggressiveness and risk of recurrence, but the biological underpinnings of this behavior are poorly understood. Past studies have focused on the biological characteristics of the tumor itself, but the ability of the immune response to contain tumor growth represents an alternative or complementary hypothesis. Emerging technologies enable us to investigate the spatial distribution of specific cell types within the tumor nest and characterize this immune response. This study aimed to investigate the association between immune cell density within the primary tumor and recurrence-free survival (RFS) in stage I and II LUAD. Methods: This study is a prospective collection with retrospective evaluation. A total of 100 patients with surgically resected LUAD and at least 5-year follow-ups, including 69 stage I and 31 stages II tumors, were enrolled. Multiplexed immunohistochemistry panels for immune markers were used for measurement. Results: Cox regression models adjusted for sex and EGFR mutation status revealed that the risk of recurrence was reduced by 50% for the unit of one interquartile range (IQR) change in the tumoral T-cell (adjusted hazard ratio per IQR increase = 0.50, 95% confidence interval: 0.27-0.93) and decreased by 64% in mast cell density (adjusted hazard ratio per IQR increase = 0.36, confidence interval: 0.15-0.84). The analyses were reported without the type I error correction for the multiple types of immune cell testing. Conclusions: Analysis of the density of immune cells within the tumor and surrounding stroma reveals an association between the density of T-cells and RFS and between mast cells and RFS in early-stage LUAD. This preliminary result is a limited study with a small sample size and a lack of an independent validation set.

5.
Cancer Res Commun ; 3(7): 1350-1365, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501683

RESUMO

Lung adenocarcinoma (LUAD) is a heterogeneous group of tumors associated with different survival rates, even when detected at an early stage. Here, we aim to investigate the biological determinants of early LUAD indolence or aggressiveness using radiomics as a surrogate of behavior. We present a set of 92 patients with LUAD with data collected across different methodologies. Patients were risk-stratified using the CT-based Score Indicative of Lung cancer Aggression (SILA) tool (0 = least aggressive, 1 = most aggressive). We grouped the patients as indolent (x ≤ 0.4, n = 14), intermediate (0.4 > x ≤ 0.6, n = 27), and aggressive (0.6 > x ≤ 1, n = 52). Using Cytometry by time of flight (CyTOF), we identified subpopulations with high HLA-DR expression that were associated with indolent behavior. In the RNA sequencing (RNA-seq) dataset, pathways related to immune response were associated with indolent behavior, while pathways associated with cell cycle and proliferation were associated with aggressive behavior. We extracted quantitative radiomics features from the CT scans of the patients. Integrating these datasets, we identified four feature signatures and four patient clusters that were associated with survival. Using single-cell RNA-seq, we found that indolent tumors had significantly more T cells and less B cells than aggressive tumors, and that the latter had a higher abundance of regulatory T cells and Th cells. In conclusion, we were able to uncover a correspondence between radiomics and tumor biology, which could improve the discrimination between indolent and aggressive LUAD tumors, enhance our knowledge in the biology of these tumors, and offer novel and personalized avenues for intervention. Significance: This study provides a comprehensive profiling of LUAD indolence and aggressiveness at the biological bulk and single-cell levels, as well as at the clinical and radiomics levels. This hypothesis generating study uncovers several potential future research avenues. It also highlights the importance and power of data integration to improve our systemic understanding of LUAD and to help reduce the gap between basic science research and clinical practice.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Multiômica , Adenocarcinoma de Pulmão/diagnóstico por imagem , Agressão , Adenocarcinoma/genética , Neoplasias Pulmonares/genética
6.
Sci Rep ; 11(1): 14424, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257356

RESUMO

Lung adenocarcinoma (ADC) is a heterogeneous group of tumors associated with different survival rates, even when detected at an early stage. Here, we aim to investigate whether CyTOF identifies cellular and molecular predictors of tumor behavior. We developed and validated a CyTOF panel of 34 antibodies in four ADC cell lines and PBMC. We tested our panel in a set of 10 ADCs, classified into long- (LPS) (n = 4) and short-predicted survival (SPS) (n = 6) based on radiomics features. We identified cellular subpopulations of epithelial cancer cells (ECC) and their microenvironment and validated our results by multiplex immunofluorescence (mIF) applied to a tissue microarray (TMA) of LPS and SPS ADCs. The antibody panel captured the phenotypical differences in ADC cell lines and PBMC. LPS ADCs had a higher proportion of immune cells. ECC clusters (ECCc) were identified and uncovered two ADC groups. ECCc with high HLA-DR expression were correlated with CD4+ and CD8+ T cells, with LPS samples being enriched for those clusters. We confirmed a positive correlation between HLA-DR expression on ECC and T cell number by mIF staining on TMA slides. Spatial analysis demonstrated shorter distances from T cells to the nearest ECC in LPS. Our results demonstrate a distinctive cellular profile of ECC and their microenvironment in ADC. We showed that HLA-DR expression in ECC is correlated with T cell infiltration, and that a set of ADCs with high abundance of HLA-DR+ ECCc and T cells is enriched in LPS samples. This suggests new insights into the role of antigen presenting tumor cells in tumorigenesis.


Assuntos
Adenocarcinoma de Pulmão , Antígenos HLA-DR , Leucócitos Mononucleares , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Humanos
7.
Front Bioinform ; 12021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35813245

RESUMO

Modern technologies designed for tissue structure visualization like brightfield microscopy, fluorescent microscopy, mass cytometry imaging (MCI) and mass spectrometry imaging (MSI) provide large amounts of quantitative and spatial information about cells and tissue structures like vessels, bronchioles etc. Many published reports have demonstrated that the structural features of cells and extracellular matrix (ECM) and their interactions strongly predict disease development and progression. Computational image analysis methods in combination with spatial analysis and machine learning can reveal novel structural patterns in normal and diseased tissue. Here, we have developed a Python package designed for integrated analysis of cells and ECM in a spatially dependent manner. The package performs segmentation, labeling and feature analysis of ECM fibers, combines this information with pre-generated single-cell based datasets and realizes cell-cell and cell-fiber spatial analysis. To demonstrate performance and compatibility of our computational tool, we integrated it with a pipeline designed for cell segmentation, classification, and feature analysis in the KNIME analytical platform. For validation, we used a set of mouse mammary gland tumors and human lung adenocarcinoma tissue samples stained for multiple cellular markers and collagen as the main ECM protein. The developed package provides sufficient performance and precision to be used as a novel method to investigate cell-ECM relationships in the tissue, as well as detect structural patterns correlated with specific disease outcomes.

8.
Front Oncol ; 10: 349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257951

RESUMO

Lung cancer is one of the deadliest diseases in the world and is the leading cause of cancer-related deaths. Among the histological types, adenocarcinoma is the most common, and it is characterized by a high degree of heterogeneity at many levels including clinical, behavioral, cellular and molecular. While most lung cancers are known for their aggressive behavior, up to 18.5% of lung cancers detected by CT screening are indolent and put patients at risk for overdiagnosis and overtreatment. The cellular and molecular underpinnings of tumor behavior remain largely unknown. In the recent years, the study of intratumor heterogeneity has become an attractive strategy to understand tumor progression. This review will summarize some of the current known determinants of lung adenocarcinoma behavior and discuss recent efforts to dissect its intratumor heterogeneity.

9.
Am J Respir Crit Care Med ; 201(6): 697-706, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31747302

RESUMO

Rationale: We have a limited understanding of the molecular underpinnings of early adenocarcinoma (ADC) progression. We hypothesized that the behavior of early ADC can be predicted based on genomic determinants.Objectives: To identify genomic alterations associated with resected indolent and aggressive early lung ADCs.Methods: DNA was extracted from 21 ADCs in situ (AISs), 27 minimally invasive ADCs (MIAs), and 54 fully invasive ADCs. This DNA was subjected to deep next-generation sequencing and tested against a custom panel of 347 cancer genes.Measurements and Main Results: Sequencing data was analyzed for associations among tumor mutation burden, frequency of mutations or copy number alterations, mutation signatures, intratumor heterogeneity, pathway alterations, histology, and overall survival. We found that deleterious mutation burden was significantly greater in invasive ADC, whereas more copy number loss was observed in AIS and MIA. Intratumor heterogeneity establishes early, as in AIS. Twenty-one significantly mutated genes were shared among the groups. Mutation signature profiling did not vary significantly, although the APOBEC signature was associated with ADC and poor survival. Subclonal KRAS mutations and a gene signature consisting of PIK3CG, ATM, EPPK1, EP300, or KMT2C mutations were also associated with poor survival. Mutations of KRAS, TP53, and NF1 were found to increase in frequency from AIS and MIA to ADC. A cancer progression model revealed selective early and late drivers.Conclusions: Our results reveal several genetic driver events, clonality, and mutational signatures associated with poor outcome in early lung ADC, with potential future implications for the detection and management of ADC.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/fisiopatologia , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Predisposição Genética para Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Adulto , Idoso , Estudos de Coortes , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA