Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bone Marrow Transplant ; 56(5): 1090-1098, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33257776

RESUMO

Cord blood transplantation (CBT) is associated with low risk of leukemia relapse. Mechanisms underlying antileukemia benefit of CBT are not well understood, however a previous study strongly but indirectly implicated cells from the mother of the cord blood (CB) donor. A fetus acquires a small number of maternal cells referred to as maternal microchimerism (MMc) and MMc is sometimes detectable in CB. From a series of 95 patients who underwent double or single CBT at our center, we obtained or generated HLA-genotyping of CB mothers in 68. We employed a technique of highly sensitive HLA-specific quantitative-PCR assays targeting polymorphisms unique to the CB mother to assay CB-MMc in patients post-CBT. After additional exclusion criteria, CB-MMc was evaluated at multiple timepoints in 36 patients (529 specimens). CB-MMc was present in seven (19.4%) patients in bone marrow, peripheral blood, innate and adaptive immune cell subsets, and was detected up to 1-year post-CBT. Statistical trends to lower relapse, mortality, and treatment failure were observed for patients with vs. without CB-MMc post-CBT. Our study provides proof-of-concept that maternal cells of the CB graft can be tracked in recipients post-CBT, and underscore the importance of further investigating CB-MMc in sustained remission from leukemia following CBT.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Hematopoéticas , Leucemia , Quimerismo , Feminino , Sangue Fetal , Humanos
2.
Proc Natl Acad Sci U S A ; 116(39): 19600-19608, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501349

RESUMO

HLA class II genes provide the strongest genetic contribution to rheumatoid arthritis (RA). HLA-DRB1 alleles encoding the sequence DERAA are RA-protective. Paradoxically, RA risk is increased in women with DERAA+ children born prior to onset. We developed a sensitive qPCR assay specific for DERAA, and found 53% of DERAA-/- women with RA had microchimerism (Mc; pregnancy-derived allogeneic cells) carrying DERAA (DERAA-Mc) vs. 6% of healthy women. DERAA-Mc quantities correlated with an RA-risk genetic background including DERAA-binding HLA-DQ alleles, early RA onset, and aspects of RA severity. CD4+ T cells showed stronger response against DERAA+ vs. DERAA- allogeneic cell lines in vitro, in line with an immunogenic role of allogeneic DERAA. Results indicate a model where DERAA-Mc activates DERAA-directed T cells that are naturally present in DERAA-/- individuals and can have cross-reactivity against joint antigens. Moreover, we provide an explanation for the enigmatic observation that the same HLA sequence differentially affects RA risk through Mendelian inheritance vs. microchimeric cell acquisition.


Assuntos
Artrite Reumatoide/imunologia , Antígenos HLA-DQ/imunologia , Cadeias HLA-DRB1/genética , Adulto , Alelos , Células Alógenas , Quimerismo , Reações Cruzadas , Epitopos/genética , Feminino , Predisposição Genética para Doença , Cadeias HLA-DRB1/metabolismo , Humanos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA