Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Health Perspect ; 131(4): 47003, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011135

RESUMO

BACKGROUND: Previous studies of short-term ambient air pollution exposure and asthma morbidity in the United States have been limited to a small number of cities and/or pollutants and with limited consideration of effects across ages. OBJECTIVES: To estimate acute age group-specific effects of fine and coarse particulate matter (PM), major PM components, and gaseous pollutants on emergency department (ED) visits for asthma during 2005-2014 across the United States. METHODS: We acquired ED visit and air quality data in regions surrounding 53 speciation sites in 10 states. We used quasi-Poisson log-linear time-series models with unconstrained distributed exposure lags to estimate site-specific acute effects of air pollution on asthma ED visits overall and by age group (1-4, 5-17, 18-49, 50-64, and 65+ y), controlling for meteorology, time trends, and influenza activity. We then used a Bayesian hierarchical model to estimate pooled associations from site-specific associations. RESULTS: Our analysis included 3.19 million asthma ED visits. We observed positive associations for multiday cumulative exposure to all air pollutants examined [e.g., 8-d exposure to PM2.5: rate ratio of 1.016 with 95% credible interval (CI) of (1.008, 1.025) per 6.3-µg/m3 increase, PM10-2.5: 1.014 (95% CI: 1.007, 1.020) per 9.6-µg/m3 increase, organic carbon: 1.016 (95% CI: 1.009, 1.024) per 2.8-µg/m3 increase, and ozone: 1.008 (95% CI: 0.995, 1.022) per 0.02-ppm increase]. PM2.5 and ozone showed stronger effects at shorter lags, whereas associations of traffic-related pollutants (e.g., elemental carbon and oxides of nitrogen) were generally stronger at longer lags. Most pollutants had more pronounced effects on children (<18 y old) than adults; PM2.5 had strong effects on both children and the elderly (>64 y old); and ozone had stronger effects on adults than children. CONCLUSIONS: We reported positive associations between short-term air pollution exposure and increased rates of asthma ED visits. We found that air pollution exposure posed a higher risk for children and older populations. https://doi.org/10.1289/EHP11661.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Poluentes Ambientais , Ozônio , Criança , Adulto , Humanos , Estados Unidos/epidemiologia , Idoso , Teorema de Bayes , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Asma/epidemiologia , Material Particulado/análise , Ozônio/análise , Serviço Hospitalar de Emergência
2.
Atmos Environ (1994) ; 2742022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131016

RESUMO

Accurate spatiotemporal air pollution fields are essential for health impact and epidemiologic studies. There are an increasing number of studies that have combined observational data with spatiotemporally complete air pollution simulations. Land-use, speciated gaseous and particulate pollutant concentrations and chemical transport modeling are fused using a random forest approach to construct daily air quality fields for 12 pollutants (CO, NOx, NO2, SO2, O3, PM2.5, PM10, and PM2.5 constituents: SO42-, NO3-, NH4+, EC and OC) between 2005 and 2014 for the continental United States with little spatial or temporal bias. R2 ranged from 0.45 to 0.96, depending upon pollutant. Additional analysis found that temporal R2 ranged from 0.84 to 0.99 and spatial R2 values ranged from 0.76 to 0.96 across species. Four-fold cross-validation was performed to assess the model's predictive power, and ranged from 0.40 for PM10 to 0.94 for SO4 with other pollutants falling within this range. Largest improvements were found for PM10 which had substantial bias in the CMAQ fields that varied east-to-west; smallest improvements were for SO4 which was already well simulated. The random forest model results to correct the simulation biases, while largely consistent year-to-year, did show slight variation due in part to changes in the distribution of monitors and changes in CMAQ simulation inputs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31505818

RESUMO

Accurate spatiotemporal air quality data are critical for use in assessment of regulatory effectiveness and for exposure assessment in health studies. A number of data fusion methods have been developed to combine observational data and chemical transport model (CTM) results. Our approach focuses on preserving the temporal variation provided by observational data while deriving the spatial variation from the community multiscale air quality (CMAQ) simulations, a type of CTM. Here we show the results of fusing regulatory monitoring observational data with 12 km resolution CTM simulation results for 12 pollutants (CO, NOx, NO2, SO2, O3, PM2.5, PM10, NO3-, NH4+, EC, OC, SO42-) over the contiguous United States on a daily basis for a period of ten years (2005-2014). An annual mean regression between the CTM simulations and observational data is used to estimate the average spatial fields, and spatial interpolation of observations normalized by predicted annual average is used to provide the daily variation. Results match the temporal variation well (R2 values ranging from 0.84-0.98 across pollutants) and the spatial variation less well (R2 values 0.42-0.94). Ten-fold cross validation shows normalized root mean square error values of 60% or less and spatiotemporal R2 values of 0.4 or more for all pollutants except SO2.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases/análise , Material Particulado/análise , Poluição do Ar/análise , Modelos Químicos , Estados Unidos
5.
ACS Omega ; 2(5): 2255-2263, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023659

RESUMO

Widespread prevalence of multidrug and pandrug-resistant bacteria has prompted substantial concern over the global dissemination of antibiotic resistance genes (ARGs). Environmental compartments can behave as genetic reservoirs and hotspots, wherein resistance genes can accumulate and be laterally transferred to clinically relevant pathogens. In this work, we explore the ARG copy quantities in three environmental media distributed across four cities in California and demonstrate that there exist city-to-city disparities in soil and drinking water ARGs. Statistically significant differences in ARGs were identified in soil, where differences in blaSHV gene copies were the most striking; the highest copy numbers were observed in Bakersfield (6.0 × 10-2 copies/16S-rRNA gene copies and 2.6 × 106 copies/g of soil), followed by San Diego (1.8 × 10-3 copies/16S-rRNA gene copies and 3.0 × 104 copies/g of soil), Fresno (1.8 × 10-5 copies/16S-rRNA gene copies and 8.5 × 102 copies/g of soil), and Los Angeles (5.8 × 10-6 copies/16S-rRNA gene copies and 5.6 × 102 copies/g of soil). In addition, ARG copy numbers in the air, water, and soil of each city are contextualized in relation to globally reported quantities and illustrate that individual genes are not necessarily predictors for the environmental resistome as a whole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA