Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Gene Ther ; 31(4): 537-551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233533

RESUMO

The highly mutated nature of bladder cancers harboring mutations in chromatin regulatory genes opposing Polycomb-mediated repression highlights the importance of targeting EZH2 in bladder cancer. Furthermore, the critical role of the retinoic acid signaling pathway in the development and homeostasis of the urothelium, and the anti-oncogenic effects of retinoids are well established. Therefore, our aim is to simultaneously target EZH2 and retinoic acid signaling in bladder cancer to potentiate the therapeutic response. Here we report that this coordinated targeting strategy stimulates an anti-oncogenic profile, as reflected by inducing a synergistic reduction in cell viability that was associated with increased apoptosis and cell cycle arrest in a cooperative and orchestrated manner. This study characterized anti-oncogenic transcriptional reprogramming centered on the transcriptional regulator CHOP by stimulating the endoplasmic reticulum stress response. We further portrayed a molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of a subset of genes involved in unfolded protein responses, reflecting the molecular mechanism underlying this co-targeting strategy. These findings highlight the importance of co-targeting the EZH2 and retinoic acid pathway in bladder cancers and encourage the design of novel treatments employing retinoids coupled with EZH2 inhibitors in bladder carcinoma.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/patologia , Retinoides/farmacologia , Retinoides/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Regulação Neoplásica da Expressão Gênica
2.
ACS Omega ; 8(48): 46101-46112, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075788

RESUMO

The enzyme steroid type II 5-alpha-reductase (SRD5α2) is responsible for the conversion of testosterone to dihydrotestosterone (DHT), which is involved in prostate cancer, benign prostatic hyperplasia, and androgenic alopecia. Inhibition of SRD5α2 activity has been explored and presented as a potential treatment for these conditions, but current drugs have side effects and alternative treatment approaches are needed. The CRISPR/Cas9 system, an innovative gene-editing tool, shows potential for targeting the SRD5α2 gene knockout as a therapeutic approach. Liposomes have been used for the immobilization and delivery of different proteins, and studies have shown that liposomes can enhance the stability and activity of enzymes. In this study, we provided the immobilization of Cas9 protein by encapsulating it in a novel cationic liposome formulation that carries sgRNA on its outer surface for gene delivery approaches. This novel delivery system has shown promising results in terms of physicochemical properties, stability, cytotoxicity, in vitro cellular uptake, and gene knockout efficiency, together with providing flexibility in sgRNA selection. The optimized final formulations showed an average diameter of 229.1 ± 3.66 nm, a polydispersity index of 0.089 ± 0.013, and a zeta potential value of 25.7 ± 0.87 mV. The encapsulation efficiency of the developed formulations has been revealed as 80.60%. The cellular uptake efficiency was evaluated and measured as 45.6% for the final formulation. Furthermore, the Lipo/Cas9:sgRNA (1.5:1) formulation decreased the relative SRD5α2 mRNA expression by 29.7% compared to the control group. The results of this study reveal that the liposomal formulation based on enzyme immobilization of Cas9 protein using CRISPR technology, an innovative gene-editing tool for SRD5α2 suppression, might be an alternative treatment option for prostate cancer or BPH treatment without current drug side effects.

3.
Life Sci ; 323: 121690, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059355

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, therapeutic management of HCC remains a challenge, emphasizing the importance of exploring novel targets. MALT1 paracaspase is a druggable signaling molecule whose dysregulation has been linked to hematological and solid tumors. However, the role of MALT1 in HCC remains poorly understood, leaving its molecular functions and oncogenic implications unclear. Here we provide evidence that MALT1 expression is elevated in human HCC tumors and cell lines, and that correlates with tumor grade and differentiation state, respectively. Our results indicate that ectopic expression of MALT1 confers increased cell proliferation, 2D clonogenic growth, and 3D spheroid formation in well differentiated HCC cell lines with relatively low MALT1 levels. In contrast, stable silencing of endogenous MALT1 through RNA interference attenuates these aggressive cancer cell phenotypes, as well as migration, invasion, and tumor-forming ability, in poorly differentiated HCC cell lines with higher paracaspase expression. Consistently, we find that pharmacological inhibition of MALT1 proteolytic activity with MI-2 recapitulates MALT1 depletion phenotypes. Finally, we show that MALT1 expression is positively correlated with NF-kB activation in human HCC tissues and cell lines, suggesting that its tumor promoting functions may involve functional interaction with the NF-kB signaling pathway. This work unveils new insights into the molecular implications of MALT1 in hepatocarcinogenesis and places this paracaspase as a potential marker and druggable liability in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Carcinoma Hepatocelular/genética , NF-kappa B/metabolismo , Caspases/metabolismo , Sobrevivência Celular , Neoplasias Hepáticas/genética
4.
Sci Rep ; 13(1): 5224, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997624

RESUMO

Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Camundongos Transgênicos , Saccharomyces cerevisiae , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980177

RESUMO

Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.


Assuntos
Histona Desmetilases , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Linhagem Celular , Regulação da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
6.
Commun Biol ; 6(1): 199, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805539

RESUMO

Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Músculos , Linhagem Celular , Movimento Celular/genética , Imunoprecipitação da Cromatina , Microambiente Tumoral , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular
7.
Biochem Genet ; 61(4): 1470-1486, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36633771

RESUMO

The isocitrate dehydrogenase (IDH), which participates in the TCA cycle, is an important key enzyme in regulating cell metabolism. The effect of the metabolic IDH enzyme on cancer pathogenesis has recently been shown in different types of cancer. However, the role of wild-type (wt) IDH1 in the development of colon cancer is still unknown. Our study investigated the role of the IDH1 enzyme in key hallmarks of colon cancer using various methods such as wound healing, cell cycle, colony formation ability, invasion, and apoptosis analysis. Furthermore, cell metabolism was investigated by pyruvate analysis, dinitrosalicylic acid, and HPLC methods. In addition, CRISPR/Cas9 tool was utilized to knockout the IDH1 gene in colon adenocarcinoma cells (SW620). Further studies were performed in two isogenic IDH1 KO clones. Our findings in both clones suggest that IDH1 KO results in G0/G1 arrest, and reduces proliferation by approximately twofold compared to IDH1 WT cells. In addition, the invasion, migration, and colony formation abilities of IDH1 KO clones were significantly decreased accompanied by significant morphological changes. In the context of metabolism, intracellular glucose, pyruvate, αKG, and malate levels were decreased, while the intracellular citrate level was increased in IDH1 KO clones as compared to IDH1 WT cells. Our results reveal that wt IDH1 knockout leads to a decrease in the aggressive features of colon cancer cells. In conclusion, we reported that wt IDH1 has an effective role in colon cancer progression and could be a potential therapeutic target.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Ciclo do Ácido Cítrico , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Glicólise , Proliferação de Células , Mutação , Linhagem Celular Tumoral
8.
Cell Signal ; 105: 110611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708753

RESUMO

TGF-ß signaling mediates its biological effects by engaging canonical Smad proteins and crosstalking extensively with other signaling networks, including the NF-kB pathway. The paracaspase MALT1 is an intracellular signaling molecule essential for NF-kB activation downstream of several key cell surface receptors. Despite intensive research on TGF-ß and NF-kB interactions, the significance of MALT1 in this context remains undecoded. Here we provide experimental evidence supporting that MALT1 functions to converge these pathways. Using A549 and Huh7 cancer cell line models, we report that TGF-ß stimulation enhances MALT1 protein and transcript levels in a time- and dose-dependent manner. Systematic and selective perturbation of TGF-ß signaling components identifies MALT1 as a downstream target of Smad3. Rescue experiments in SMAD3 knockout cells confirm that C-terminal phosphorylation of Smad3 is central to MALT1 induction. Corroborating these data, we document that the expression of SMAD3 and MALT1 genes are positively correlated in TCGA cohorts, and we trace the molecular basis of MALT1 elevation to promoter activation. Functional studies in parental as well as NF-kB p65 signaling reporter engineered cells conclusively reveal that MALT1 is paramount for TGF-ß-stimulated nuclear translocation and transcriptional activation of NF-kB p65. Furthermore, we find that BCL10 is also implicated in TGF-ß activation of NF-kB target genes, potentially coupling the TGF-ß-MALT1-NF-kB signaling axis to the CARMA-BCL10-MALT1 (CBM) signalosome. The novel findings of this study indicate that MALT1 is a downstream target of the canonical TGF-ß/Smad3 pathway and plays a critical role in modulating TGF-ß and NF-kB crosstalk in cancer.


Assuntos
NF-kappa B , Neoplasias , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
9.
Sci Rep ; 12(1): 6050, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410414

RESUMO

Ongoing research efforts to identify potent regulatory sequences that deliver robust and sustained transgene expression are critical for Chinese hamster ovary (CHO) cell line development technologies to meet the growing demand for recombinant proteins. Here we report the engineering and validation of a highly customizable single vector toolkit that comprises an all-in-one dual luciferase reporter system for quantitative and systematic interrogation of transcriptional regulatory sequences in transient and stable transfectants of CHO cells. To model the execution of the reporter system, we implemented a battery of known constitutive promoters including human CMV-mIE, SV40, HSV-TK, mouse PGK, human EF1α, EF1α short (EFS), human UBC, synthetic CAG, and Chinese hamster EF1α (CHEF1α). Of the nine promoters, CMV-mIE yielded the highest transcriptional activity in transient transfection settings, while CHEF1α was the strongest among a select subset of promoters in stable transfectants of CHO-DG44 pools. Remodeling the vector toolkit to build a dual fluorescent reporter system featured an alternative to bioluminescence based reporters. We infer that the findings of this study may serve as a basis to establish new vectors with weak or strong constitutive promoters. Furthermore, the modular all-in-one architecture of the reporter system proved to be a viable tool for discovering novel regulatory sequences that ensure high levels of transient and stable transgene expression in CHO and perhaps other mammalian cell lines.


Assuntos
Infecções por Citomegalovirus , Animais , Células CHO , Cricetinae , Cricetulus , Vetores Genéticos/genética , Luciferases/genética , Camundongos , Proteínas Recombinantes/metabolismo , Transfecção , Transgenes
10.
Cancers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205692

RESUMO

Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor ß (TGF-ß) signaling pathway. The regulatory cytokine TGF-ß and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-ß signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-ß functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial-mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-ß signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-ß signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-ß signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.

11.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948046

RESUMO

AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Regulação para Cima , Animais , Benzocicloeptenos , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Fenótipo , Triazóis , Receptor Tirosina Quinase Axl
12.
Front Cell Dev Biol ; 9: 639779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458250

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive, chemo resistant neoplasm with poor prognosis and limited treatment options. Exploring activated pathways upon drug treatment can be used to discover more effective anticancer agents to overcome therapy resistance and enhance therapeutic outcomes for patients with advanced HCC. Human tumor-derived cell lines recapitulate HCC diversity and are widely used for studying mechanisms that drive drug resistance in HCC. In this study, we show that regorafenib treatment activates Wnt/ß-catenin signaling only in hepatoblast-like HCC cell lines and induces enrichment of markers associated with hepatic stem/progenitor cells. Moreover, activation of Wnt/ß-catenin signaling via Wnt3a/R-Spo1 treatment protects these cells from regorafenib induced apoptosis. On the other hand, regorafenib resistant cells established by long-term regorafenib treatment demonstrate diminished Wnt/ß-catenin signaling activity while TGF-ß signaling activity of these cells is significantly enhanced. Regorafenib resistant cells (RRCs) also show increased expression of several mesenchymal genes along with an induction of CD24 and CD133 cancer stem cell markers. Moreover, regorafenib resistant cells also exhibit significantly augmented in vitro and in vivo migration capacity which could be reversed by TGF-ß type 1 receptor (TGFb -R1) inhibition. When combined with regorafenib treatment, TGFß-R1 inhibition also significantly decreased colony formation ability and augmented cell death in resistant spheroids. Importantly, when we knocked down TGFß-R1 using a lentiviral plasmid, regorafenib resistant cells entered senescence indicating that this pathway is important for their survival. Treatment of RRCs with TGFß-R1 inhibitor and regorafenib significantly abolished pSTAT3, pSMAD2 and pERK (44/42) expression suggesting the involvement of both canonical and non-canonical pathways. In conclusion, our data suggest that HCC tumors with aberrant activation in the Wnt/ß-catenin pathway, might have higher intrinsic regorafenib resistance and the inhibition of this pathway along with regorafenib administration might increase regorafenib-induced cell death in combinational therapies. However, to resolve acquired regorafenib resistance developed in HCC patients, the combined use of TGF-ß pathway inhibitors and Regorafenib constitute a promising approach that can increase regorafenib sensitization and prevent tumor recurrence.

13.
J Gastrointest Cancer ; 52(4): 1320-1335, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463913

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most challenging malignancies, with high morbidity and mortality rates. The transforming growth factor-ß (TGF-ß) pathway plays a dual role in HCC, acting as both tumor suppressor and promoter. A thorough understanding of the mechanisms underlying its opposing functions is important. The growth suppressive effects of TGF-ß remain largely unknown for mesenchymal HCC cells. Using a systematic approach, here we assess the cytostatic TGF-ß responses and intracellular transduction of the canonical TGF-ß/Smad signaling cascade in mesenchymal-like HCC cell lines. METHODS: Nine mesenchymal-like HCC cell lines, including SNU182, SNU387, SNU398, SNU423, SNU449, SNU475, Mahlavu, Focus, and Sk-Hep1, were used in this study. The cytostatic effects of TGF-ß were evaluated by cell cycle analysis, BrdU labeling, and SA-ß-Gal assay. RT-PCR and western blot analysis were utilized to determine the mRNA and protein expression levels of TGF-ß signaling components and cytostatic genes. Immunoperoxidase staining and luciferase reporter assays were performed to comprehend the transduction of the canonical TGF-ß pathway. RESULTS: We report that mesenchymal-like HCC cell lines are resistant to TGF-ß-induced growth suppression. The vast majority of cell lines have an active canonical signaling from the cell membrane to the nucleus. Three cell lines had lost the expression of cytostatic effector genes. CONCLUSION: Our findings reveal that cytostatic TGF-ß responses have been selectively lost in mesenchymal-like HCC cell lines. Notably, their lack of responsiveness was not associated with a widespread impairment of TGF-ß signaling cascade. These cell lines may serve as valuable models for studying the molecular mechanisms underlying the loss of TGF-ß-mediated cytostasis during hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Carcinogênese , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p15/genética , Humanos , Neoplasias Hepáticas/patologia , RNA Mensageiro , Proteínas Smad/genética
14.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254585

RESUMO

Despite current advancements in research and therapeutics, lung cancer remains the leading cause of cancer-related mortality worldwide. This is mainly due to the resistance that patients develop against chemotherapeutic agents over the course of treatment. In the context of non-small cell lung cancers (NSCLC) harboring EGFR-oncogenic mutations, augmented levels of AXL and GAS6 have been found to drive resistance to EGFR tyrosine kinase inhibitors such as Erlotinib and Osimertinib in certain tumors with mesenchymal-like features. By studying the ontogeny of AXL-positive cells, we have identified a novel non-genetic mechanism of drug resistance based on cell-state transition. We demonstrate that AXL-positive cells are already present as a subpopulation of cancer cells in Erlotinib-naïve tumors and tumor-derived cell lines and that the expression of AXL is regulated through a stochastic mechanism centered on the epigenetic regulation of miR-335. The existence of a cell-intrinsic program through which AXL-positive/Erlotinib-resistant cells emerge infers the need of treating tumors harboring EGFR-oncogenic mutations upfront with combinatorial treatments targeting both AXL-negative and AXL-positive cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética/fisiologia , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Acrilamidas , Compostos de Anilina , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Receptores ErbB/genética , Cloridrato de Erlotinib , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
15.
Nanomedicine (Lond) ; 16(12): 963-978, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970666

RESUMO

Aim: The CRISPR/Cas9 system is a promising gene-editing tool for various anticancer therapies; however, development of a biocompatible, nonviral and efficient delivery of CRISPR/Cas9 expression systems remains a challenge. Materials & methods: Solid lipid nanoparticles (SLNs) were produced based on pseudo and 3D ternary plots. Obtained SLNs and their complexes with PX458 plasmid DNA were characterized and evaluated in terms of cytotoxicity and transfection efficiency. Results: SLNs were found to be nanosized, monodispersed, stable and nontoxic. Furthermore, they revealed similar transfection efficiency as the positive control. Conclusion: Overall, we have achieved a good SLN basis for CRISPR/Cas9 delivery and have the potential to produce SLNs with targeted anticancer properties by modifying production parameters and components to facilitate translating CRISPR/Cas9 into preclinical studies.


Assuntos
Edição de Genes , Nanopartículas , Sistemas CRISPR-Cas/genética , Lipídeos , Transfecção
16.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494247

RESUMO

Cellular senescence is a state of stable cell cycle arrest that can be triggered in response to various insults and is characterized by distinct morphological hallmarks, gene expression profiles, and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key component of normal physiology with tumor suppressive functions. In the last few decades, novel cancer treatment strategies exploiting pro-senescence therapies have attracted considerable interest. Recent insight, however, suggests that therapy-induced senescence (TIS) elicits cell-autonomous and non-cell-autonomous implications that potentially entail detrimental consequences, reflecting the Jekyll and Hyde nature of cancer cell senescence. In essence, the undesirable manifestations that generally culminate in inflammation, cancer stemness, senescence reversal, therapy resistance, and disease recurrence are dictated by the persistent accumulation of senescent cells and the SASP. Thus, mitigating these pro-tumorigenic effects by eliminating these cells or inhibiting their SASP production holds great promise for developing innovative therapeutic strategies. In this review, we describe the fundamental aspects and dynamics of cancer cell senescence and summarize the comprehensive research on the adverse outcomes of TIS. Furthermore, we underline the rationale and motivation of emerging senotherapeutic modalities surrounding the removal of senescent cells and the SASP to help maximize the overall efficacy of cancer therapies.


Assuntos
Senescência Celular , Neoplasias/patologia , Animais , Senescência Celular/genética , Homeostase , Humanos , Modelos Biológicos , Terapia de Alvo Molecular
17.
Int J Cancer ; 148(10): 2364-2374, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128775

RESUMO

Retinoic acid (RA) signaling is a crucial developmental pathway involved in urothelium development, differentiation and regeneration. Deregulation of the RA signaling is highly implicated in several cancers, including bladder cancer, underlying the need to unravel the complete regulatory aspects of the retinoids in bladder tumorigenesis. Given the fact that RA receptors are transcription factors functioning at the chromatin level and act in close cooperation with chromatin modifiers, it is known that retinoids show their efficacy by changing the epigenome. Bladder cancer can be defined as a "disease of chromatin" with mutations identified in the genes involved in chromatin regulation in 80% of the patients. Therefore, a careful examination of the epigenetic backgrounds and the breakdown of the emerging and highly underexplored field of RA dependent regulation of the epigenome is essential to fully understand the retinoid-dependent effects on bladder cancer. With this motivation, in this review, we evaluate the role of RA signaling in bladder cancer with a focus on the regulatory and mutational aspects, emphasizing the deregulatory characteristics in bladder cancer and highlighting the potential treatment opportunities with the RA and derivatives alone or in combination with epigenetic drugs.

18.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882916

RESUMO

Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the mesothelial cells lining the pleural surface of the chest wall and lung. The etiology of MPM is strongly associated with prior exposure to asbestos fibers, and the median survival rate of the diagnosed patients is approximately one year. Despite the latest advancements in surgical techniques and systemic therapies, currently available treatment modalities of MPM fail to provide long-term survival. The increasing incidence of MPM highlights the need for finding effective treatments. Targeted therapies offer personalized treatments in many cancers. However, targeted therapy in MPM is not recommended by clinical guidelines mainly because of poor target definition. A better understanding of the molecular and cellular mechanisms and the predictors of poor clinical outcomes of MPM is required to identify novel targets and develop precise and effective treatments. Recent advances in the genomics and functional genomics fields have provided groundbreaking insights into the genomic and molecular profiles of MPM and enabled the functional characterization of the genetic alterations. This review provides a comprehensive overview of the relevant literature and highlights the potential of state-of-the-art genomics and functional genomics research to facilitate the development of novel diagnostics and therapeutic modalities in MPM.


Assuntos
Biomarcadores Tumorais/metabolismo , Genômica/métodos , Mesotelioma Maligno/patologia , Fenômica/métodos , Neoplasias Pleurais/patologia , Animais , Biomarcadores Tumorais/genética , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo
19.
Front Cell Dev Biol ; 7: 345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921856

RESUMO

"Liver medicine" refers to all diagnostic and treatment strategies of diseases and conditions that cause liver failure directly or indirectly. Despite significant advances in the field of liver medicine in recent years, improved tools are needed to efficiently define the pathophysiology of liver diseases and provide effective therapeutic options to patients. Recently, organoid technology has been established as the state-of-the-art cell culture tool for studying human biology in health and disease. In general, organoids are simplified three-dimensional (3D) mini-organ structures that can be grown in a 3D matrix where the structural and functional aspects of real organs are efficiently recapitulated. The generation of organoids is facilitated by exogenous factors that regulate multiple signaling pathways and promote the self-renewal, proliferation, and differentiation of the cells to promote spontaneous self-organization and tissue-specific organogenesis. Newly established protocols suggest that liver-specific organoids can be derived from either pluripotent stem cells or liver-specific stem/progenitor cells. Today, robust and long-term cultures of organoids with the closest physiology to in vivo liver, in terms of cellular composition and function, open a new era in studying and understanding the disease pathology as well as high-throughput drug screening. Of note, these next-generation cell culture systems have immense potential to be further improved by genome editing and bioengineering technologies to foster the development of patient-specific therapeutic options for clinical applications. Here, we will discuss recent advances and challenges in the generation of human liver organoids and highlight emerging concepts for their potential applications in liver medicine.

20.
Oncotarget ; 9(96): 36849-36866, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30627326

RESUMO

BACKGROUND: Considerable evidence suggests that oxidative stress plays an essential role in the progression of hepatocellular carcinoma (HCC). While acquired resistance to oxidative stress is the main driver of aggressive cell phenotype, the underlying mechanisms remain unknown. Here, we tested the hypothesis that elevated expression of Thioredoxin-interacting protein (TXNIP) is a main regulator of the aggressive phenotype in HCC. MATERIALS AND METHODS: To test this hypothesis, we measured TXNIP expression levels in 11 HCC cell lines by qPCR and western blotting. In addition, 80 pairs of HCC tissues and matched liver tissues of 73 cases, as well as 11 normal liver tissue samples were examined by immunohistochemistry. Besides, TXNIP expression levels were analyzed by Oncomine Platform in seven independent microarray datasets. Finally, the functional role of TXNIP in HCC was investigated in vitro and in vivo by silencing and overexpression studies. RESULTS: Our results show that TXNIP expression is significantly increased in HCC compared to non-tumor counterparts (p < 0.0001) as well as to normal (p < 0.0001) and cirrhotic (p < 0.0001) liver tissues. Moreover, stable overexpression of TXNIP in HCC cells (i) significantly increases ROS levels, (ii) induces EMT phenotype, (iii) increases motility, invasion and 3D branching tubulogenesis, (iv) decreases apoptosis, and (v) elevates in vivo metastasis in zebrafish embryos. Finally, we identify sinusoidal/stromal and cytoplasmic TXNIP staining patterns as risk factors for intrahepatic vascular invasion (p:0.0400). CONCLUSION: Our results strongly suggest that overexpression of TXNIP has a pivotal role in HCC progression by inducing cell survival, invasion, and metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA