Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 43(8): 4607, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487877

RESUMO

PURPOSE: This paper presents an overview of multisource inverse-geometry computed tomography (IGCT) as well as the development of a gantry-based research prototype system. The development of the distributed x-ray source is covered in a companion paper [V. B. Neculaes et al., "Multisource inverse-geometry CT. Part II. X-ray source design and prototype," Med. Phys. 43, 4617-4627 (2016)]. While progress updates of this development have been presented at conferences and in journal papers, this paper is the first comprehensive overview of the multisource inverse-geometry CT concept and prototype. The authors also provide a review of all previous IGCT related publications. METHODS: The authors designed and implemented a gantry-based 32-source IGCT scanner with 22 cm field-of-view, 16 cm z-coverage, 1 s rotation time, 1.09 × 1.024 mm detector cell size, as low as 0.4 × 0.8 mm focal spot size and 80-140 kVp x-ray source voltage. The system is built using commercially available CT components and a custom made distributed x-ray source. The authors developed dedicated controls, calibrations, and reconstruction algorithms and evaluated the system performance using phantoms and small animals. RESULTS: The authors performed IGCT system experiments and demonstrated tube current up to 125 mA with up to 32 focal spots. The authors measured a spatial resolution of 13 lp/cm at 5% cutoff. The scatter-to-primary ratio is estimated 62% for a 32 cm water phantom at 140 kVp. The authors scanned several phantoms and small animals. The initial images have relatively high noise due to the low x-ray flux levels but minimal artifacts. CONCLUSIONS: IGCT has unique benefits in terms of dose-efficiency and cone-beam artifacts, but comes with challenges in terms of scattered radiation and x-ray flux limits. To the authors' knowledge, their prototype is the first gantry-based IGCT scanner. The authors summarized the design and implementation of the scanner and the authors presented results with phantoms and small animals.


Assuntos
Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Artefatos , Calibragem , Desenho de Equipamento , Imagens de Fantasmas , Polimetil Metacrilato , Coelhos , Doses de Radiação , Ratos , Espalhamento de Radiação , Tomógrafos Computadorizados , Água , Raios X
2.
IEEE Trans Med Imaging ; 29(3): 724-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20199910

RESUMO

X-ray computed tomography is a powerful medical imaging device. It allows high-resolution 3-D visualization of the human body. However, one drawback is the health risk associated with ionizing radiation. Simply downscaling the radiation intensities over the entire scan results in increased quantum noise. This paper proposes the concept of computer-assisted scan protocol and reconstruction. More specifically, we propose a method to compute patient and task-specific intensity profiles that achieve an optimal tradeoff between radiation dose and image quality. Therefore, reasonable image variance and dose metrics are derived. Conventional third-generation systems as well as inverted geometry concepts are considered. Two dose/noise minimization problems are formulated and solved by an efficient algorithm providing optimized milliampere (mA)-profiles. Thorax phantom simulations demonstrate the promising advantage of this technique: in this particular example, the dose is reduced by 53% for third-generation systems and by 86% for an inverted geometry in comparison to a sinusoidal mA-profile at a constant upper noise limit.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Simulação por Computador , Feminino , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA