Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400737, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874112

RESUMO

Point defects play a crucial role in determining the properties of atomically thin semiconductors. This work demonstrates the controlled formation of different types of defects and their comprehensive optical characterization using hyperspectral line imaging (HSLI). Distinct optical responses are observed in monolayer semiconductors grown under different stoichiometries using metal-organic chemical vapor deposition. HSLI enables the simultaneous measurement of 400 spectra, allowing for statistical analysis of optical signatures at close to a centimeter scale. The study discovers that chalcogen-rich samples exhibit remarkable optical uniformity due to reduced precursor accumulation compared to the metal-rich case. The utilization of HSLI as a facile and reliable characterization tool pushes the boundaries of potential applications for atomically thin semiconductors in future devices.

2.
Proc Natl Acad Sci U S A ; 119(15): e2121808119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385350

RESUMO

SignificanceAtomic defects in solid-state materials are promising candidates as quantum bits, or qubits. New materials are actively being investigated as hosts for new defect qubits; however, there are no unifying guidelines that can quantitatively predict qubit performance in a new material. One of the most critical property of qubits is their quantum coherence. While cluster correlation expansion (CCE) techniques are useful to simulate the coherence of electron spins in defects, they are computationally expensive to investigate broad classes of stable materials. Using CCE simulations, we reveal a general scaling relation between the electron spin coherence time and the properties of qubit host materials that enables rapid and quantitative exploration of new materials hosting spin defects.

3.
ACS Appl Mater Interfaces ; 13(38): 45768-45777, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34541839

RESUMO

Hexagonal boron nitride (h-BN) has been recently found to host a variety of quantum point defects, which are promising candidates as single-photon sources for solid-state quantum nanophotonic applications. Most recently, optically addressable spin qubits in h-BN have been the focus of intensive research due to their unique potential in quantum computation, communication, and sensing. However, the number of high-symmetry, high-spin defects that are desirable for developing spin qubits in h-BN is highly limited. Here, we combine density functional theory (DFT) and quantum embedding theories to show that out-of-plane XNYi dimer defects (X, Y = C, N, P, and Si) form a new class of stable C3v spin-triplet defects in h-BN. We find that the dimer defects have a robust 3A2 ground state and 3E excited state, both of which are isolated from the h-BN bulk states. We show that 1E and 1A shelving states exist and they are positioned between the 3E and 3A2 states for all the dimer defects considered in this study. To support future experimental identification of the XNYi dimer defects, we provide extensive characterization of the defects in terms of their spin and optical properties. We predict that the zero-phonon line of the spin-triplet XNYi defects lies in the visible range (800 nm to 500 nm). We compute the zero-field splitting of the dimers' spin to range from 1.79 GHz (SiNPi0) to 29.5 GHz (CNNi0). Our results broaden the scope of high-spin defect candidates that would be useful for the development of spin-based solid-state quantum technologies in two-dimensional hexagonal boron nitride.

4.
ACS Appl Mater Interfaces ; 12(32): 36362-36369, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677428

RESUMO

Color centers in two-dimensional hexagonal boron nitride (h-BN) have recently emerged as stable and bright single-photon emitters (SPEs) operating at room temperature. In this study, we combine theory and experiment to show that vacancy-based SPEs selectively form at nanoscale wrinkles in h-BN with its optical dipole preferentially aligned to the wrinkle direction. By using density functional theory calculations, we find that the wrinkle's curvature plays a crucial role in localizing vacancy-based SPE candidates and aligning the defect's symmetry plane to the wrinkle direction. By performing optical measurements on SPEs created in h-BN single-crystal flakes, we experimentally confirm the wrinkle-induced generation of SPEs and their polarization alignment to the wrinkle direction. Our results not only provide a new route to controlling the atomic position and the optical property of the SPEs but also revealed the possible crystallographic origin of the SPEs in h-BN, greatly enhancing their potential for use in solid-state quantum photonics and quantum information processing.

5.
Nano Lett ; 18(8): 4710-4715, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932664

RESUMO

Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride ( h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.

6.
Nat Commun ; 7: 12935, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27679936

RESUMO

Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.

7.
Sci Rep ; 6: 20794, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852801

RESUMO

Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

8.
Sci Rep ; 6: 20803, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876901

RESUMO

Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.

9.
Sci Rep ; 5: 11201, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084630

RESUMO

The growth kinetics of polymer thin films prepared by plasma-based deposition method were explored using atomic force microscopy. The growth behavior of the first layer of the polythiophene somewhat differs from that of the other layers because the first layer is directly deposited on the substrate, whereas the other layers are deposited on the polymer itself. After the deposition of the first layer, each layer is formed with a cycle of 15 s. The present work represents the growth kinetics of the plasma-polymerized films and could be helpful for further studies on growth kinetics in other material systems as well as for applications of plasma-polymerized thin films.

10.
Sci Rep ; 5: 8822, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744275

RESUMO

Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries.

11.
Nanotechnology ; 25(35): 355703, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25116337

RESUMO

We have demonstrated that domain switching in ferroelectric copolymer films can be significantly affected by humidity. With increasing relative humidity (RH), we observed larger domains with highly irregular boundaries as a result of lateral spreading of the tip-induced electric field that originates from water adsorption. Fractal dimension study of irregular domains reveals that the fractal dimension is higher in cases where the RH is higher. The results show that the RH is one of the major switching parameters in ferroelectric copolymers, and therefore could allow clear understanding with regard to domain switching behavior in the ferroelectric copolymer films under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA