Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Microb Biotechnol ; 17(9): e70009, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264362

RESUMO

Carotenoids are natural pigments utilized as colourants and antioxidants across food, pharmaceutical and cosmetic industries. They exist in carbon chain lengths of C30, C40, C45 and C50, with C40 variants being the most common. Bacterioruberin (BR) and its derivatives are part of the less common C50 carotenoid group, synthesized primarily by halophilic archaea. This study analysed the compositional characteristics of BR extract (BRE) isolated from 'Haloferax marinum' MBLA0078, a halophilic archaeon isolated from seawater near Yeoungheungdo Island in the Republic of Korea, and investigated its antioxidant activity and protective effect on lipopolysaccharide (LPS)-induced C2C12 myotube atrophy. The main components of BRE included all-trans-BR, monoanhydrobacterioruberin, 2-isopentenyl-3,4-dehydrorhodopin and all-trans-bisanhydrobacterioruberin. BRE exhibited higher antioxidant activity and DNA nicking protection activity than other well-known C40 carotenoids, such as ß-carotene, lycopene and astaxanthin. In C2C12 myotubes, LPS treatment led to a reduction in myotube diameter and number, as well as the hypertranscription of the muscle-specific ubiquitin ligase MAFbx and MuRF1. BRE mitigated these changes by activating the Akt/mTOR pathway. Furthermore, BRE abolished the elevated cellular reactive oxygen species levels and the inflammation response induced by LPS. This study demonstrated that 'Hfx. marinum' is an excellent source of natural microbial C50 carotenoids with strong antioxidant capacity and may offer potential protective effects against muscle atrophy.


Assuntos
Antioxidantes , Carotenoides , Lipopolissacarídeos , Fibras Musculares Esqueléticas , Antioxidantes/farmacologia , Animais , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Linhagem Celular , Carotenoides/farmacologia , República da Coreia , Água do Mar/microbiologia
2.
J Microbiol Biotechnol ; 34(10): 1-11, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39210620

RESUMO

In this study, a novel species within the genus Paracoccus was isolated from the coastal soil of Dokdo (Seodo) Island and investigated. We elucidated the novel species, designated MBLB3053T , through genomic analysis of novel functional microbial resources. Cells were gram-negative, non-motile, and coccoid, and the colony was light orange in color. Phylogenetic analysis based on the 16S rRNA gene showed that strain MBLB3053T was related to the genus Paracoccus, with 98.5% similarity to Paracoccus aestuariivivens. Comparative genome analysis also revealed the strain to be a novel species of the genus Paracoccus by average nucleotide identity and in silico DNA-DNA hybridization values. Through secondary metabolite analysis, terpene biosynthetic gene clusters associated with carotenoid biosynthesis were found in strain MBLB3053T . Using high-performance liquid chromatography, strain MBLB3053T was confirmed to produce carotenoids, including all-trans-astaxanthin, by comparison to the standard compound. Notably, the isolate was also confirmed to produce carotenoids that other closely related species did not produce. Based on this comprehensive polyphasic taxonomy, strain MBLB3053T represents a novel species within the genus Paracoccus, for which the name Paracoccus aurantius sp. nov is proposed. The type strain was MBL3053T (=KCTC 8269T =JCM 36634T ). These findings support the research and resource value of this novel species, which was isolated from the Dokdo environmental microbiome.

3.
Int J Biol Macromol ; 278(Pt 2): 134858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163968

RESUMO

The iminosugar class of carbohydrate-active enzyme inhibitors has therapeutic applications in metabolic syndrome conditions, viral infections and cancer. Compared to chemical synthesis, microbial iminosugar production has benefits of cost, sustainability and optimization. In this study, the 1-deoxynojirimycin (DNJ) biosynthetic gene cluster from Bacillus velezensis MBLB0692, and its individual genes, were cloned into Corynebacterium glutamicum (Cg). Characterizations of the encoded aminotransferase GabT1, phosphatase Yktc1, and dehydrogenase GutB1, were performed with purified enzymes and whole cell biocatalysts bearing individual and clustered (TYB) genes. GabT1 showed a variable pattern in its half-reaction with a slow turnover. GutB1 was an alkaline dehydrogenase with a broad substrate specificity and no divalent ion dependency while the zinc-dependent phosphatase Yktc1 had substrate specificity that was both pH- and ion-dependent. The CgYktc1 and CgGutB1 whole cells were viable biocatalysts with wider ranges of substrates than their enzyme counterparts. The CgTYB cells produced mannosidase-inhibiting iminosugars corresponding to mannojirimycin dehydrate (162 m/z) and deoxymannojirimycin (164 m/z). Mannosidase inhibitors have been found to be effective in treating orphan diseases, cancer and viral infections, and their biosynthesis by recombinant C. glutamicum can be optimized for industrial production and novel drug development.


Assuntos
1-Desoxinojirimicina , Bacillus , Corynebacterium glutamicum , Família Multigênica , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/enzimologia , Bacillus/genética , Bacillus/enzimologia , Manosidases/genética , Manosidases/metabolismo , Manosidases/antagonistas & inibidores , Imino Açúcares/química , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Microorganisms ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276188

RESUMO

The ubiquitous nature of microorganisms demonstrates their ability to survive and thrive in diverse ecological settings, and their presence in extreme environments that approach the known limits of adaptable living confers importance to their role in those ecosystems [...].

5.
Microb Cell Fact ; 23(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172950

RESUMO

Haloarchaea produce bacterioruberin, a major C50 carotenoid with antioxidant properties that allow for its potential application in the food, cosmetic, and pharmaceutical industries. This study aimed to optimize culture conditions for total carotenoid, predominantly comprising bacterioruberin, production using Halorubrum ruber MBLA0099. A one-factor-at-a-time and statistically-based experimental design were applied to optimize the culture conditions. Culture in the optimized medium caused an increase in total carotenoid production from 0.496 to 1.966 mg L- 1 Maximal carotenoid productivity was achieved in a 7-L laboratory-scale fermentation and represented a 6.05-fold increase (0.492 mg L-1 d-1). The carotenoid extracts from strain MBLA0099 exhibited a 1.8-10.3-fold higher antioxidant activity in vitro, and allowed for a higher survival rate of Caenorhabditis elegans under oxidative stress conditions. These results demonstrated that Hrr. ruber MBLA0099 has significant potential as a haloarchaon for the commercial production of bacterioruberin.


Assuntos
Antioxidantes , Halorubrum , Carotenoides
6.
Microorganisms ; 11(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004730

RESUMO

The novel bacterial strain MBLB1776T was isolated from marine mud in Uljin, the Republic of Korea. Cells were Gram-positive, spore-forming, non-motile, and non-flagellated rods. Growth was observed at a temperature range of 10-45 °C, pH range of 6.0-8.0, and NaCl concentrations of 0-4% (w/v). Phylogenetic analysis of the 16S rRNA gene sequence revealed that MBLB1776T belonged to the genus Paenibacillus and was closely related to Paenibacillus cavernae C4-5T (94.83% similarity). Anteiso-C15:0, iso-C16:0, C16:0, and iso-C15:0 were the predominant fatty acids. Menaquinone 7 was identified as the major isoprenoid quinone. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Its whole genome was 6.3 Mb in size, with a G+C content of 55.8 mol%. Average nucleotide identity and in silico DNA-DNA hybridization values were below the species delineation threshold. Gene function analysis revealed the presence of a complete C30 carotenoid biosynthetic pathway. Intriguingly, MBLB1776T harbored carotenoid pigments, imparting an orange color to whole cells. Based on this comprehensive polyphasic taxonomy, the MBLB1776T strain represents a novel species within the genus Paenibacillus, for which the name Paenibacillus aurantius sp. nov is proposed. The type strain was MBLB1776T (=KCTC 43279T = JCM 34220T). This is the first report of a carotenoid-producing Paenibacillus sp.

7.
Food Sci Biotechnol ; 32(6): 749-768, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37041815

RESUMO

Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.

8.
Food Sci Biotechnol ; 32(4): 543-552, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911323

RESUMO

This study focuses on the development of functional probiotics using caroteonid-producing lactic acid bacteria (LAB) with antioxidant properties. Thirty LAB strains were evaluated for their probiotic properties. Carotenoid biosynthesis gene cluster (crtMN operon) was detected using polymer chain reaction (PCR). The carotenoid identified as 4,4'-diaponeurosporene was analyzed via UV visible absorption spectra and HPLC. Five carotenoid-producing strains showed antioxidant activities. Lactiplantibacillus plantarum MGB0112, which showed the highest carotenoid production measuring at 470 nm of absorbance per ml of culture broth (0.014 A470nm/ml), showed low pH (56.5%) and bile salt (97.8%) tolerance with high adhesion properties (55.1% for toluene). Furthermore, this strain and 4,4'-diaponeurosporene extract exhibited antioxidant activity (99.5 and 40.1%, respectively) against DPPH free radicals in vitro. Their antioxidant properties were confirmed in vivo (45.6 and 55.2% survival rates in Caenorhabditis elegans). Therefore, C30 carotenoid-producing strain MGB0112 demonstrates outstanding antioxidant effects and can be a potential functional probiotics.

9.
Appl Biochem Biotechnol ; 195(1): 135-151, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36066805

RESUMO

Carotenoids, a group of isoprenoid pigments, are naturally synthesized by various microorganisms and plants, and are industrially used as ingredients in food, cosmetic, and pharmaceutical product formulations. Although several types of carotenoids and diverse microbial carotenoid producers have been reported, studies on lactic acid bacteria (LAB)-derived carotenoids are relatively insufficient. There is a notable lack of research focusing on C30 carotenoids, the functional characterizations of their biosynthetic genes and their mass production by genetically engineered microorganisms. In this study, the biosynthesis of 4,4'-diaponeurosporene in Escherichia coli harboring the core biosynthetic genes, dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN), from Lactiplantibacillus plantarum subsp. plantarum KCCP11226 was constructed to evaluate and enhance 4,4'-diaponeurosporene production and antioxidant activity. The production of 4,4'-diapophytoene, a substrate of 4,4'-diaponeurosporene, was confirmed in E. coli expressing only the crtM gene. In addition, recombinant E. coli carrying both C30 carotenoid biosynthesis genes (crtM and crtN) was confirmed to biosynthesize 4,4'-diaponeurosporene and exhibited a 6.1-fold increase in carotenoid production compared to the wild type and had a significantly higher antioxidant activity compared to synthetic antioxidant, butylated hydroxytoluene. This study presents the discovery of an important novel E. coli platform in consideration of the industrial applicability of carotenoids.


Assuntos
Antioxidantes , Escherichia coli , Escherichia coli/genética , Carotenoides/química
10.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290686

RESUMO

Carotenoids are lipophilic tetraterpenoid pigments produced by plants, algae, arthropods, and certain bacteria and fungi. These biologically active compounds are used in the food, feed, and nutraceutical industries for their coloring and the physiological benefits imparted by their antioxidant properties. The current global carotenoid market is dominated by synthetic carotenoids; however, the rising consumer demand for natural products has led to increasing research and development in the mass production of carotenoids from alternative natural sources, including microbial synthesis and plant extraction, which holds a significant market share. To date, microbial research has focused on C40 carotenoids, but studies have shown that C30 carotenoids contain similar-and in some microbial strains, greater-antioxidant activity in both the physical and chemical quenching of reactive oxygen species. The discovery of carotenoid biosynthetic pathways in different microorganisms and advances in metabolic engineering are driving the discovery of novel C30 carotenoid compounds. This review highlights the C30 carotenoids from microbial sources, showcasing their antioxidant properties and the technologies emerging for their enhanced production. Industrial applications and tactics, as well as biotechnological strategies for their optimized synthesis, are also discussed.

11.
J Microbiol ; 60(10): 1007-1020, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029458

RESUMO

A novel haloarchaeal species designated as MBLA0099T was isolated from seawater near Yeongheung Island. Cells were Gram-negative, non-motile, red-pigmented, and rod-shaped. They grew at 10-45°C, within pH 5.5-9.0, and between 7.5% and 30% NaCl concentrations. Cells were able to grow without Mg2+ and were lysed in distilled water. The size of the whole-genome and G + C content of DNA was 3.02 Mb and 68.9 mol%, respectively. Phylogenetic analysis shows that the strain MBLA0099T belongs to the genus Halorubrum. The average nucleotide and amino acid identity, and in silico DNA-DNA hybridization values were below the species delineation threshold. Pan-genomic analysis revealed that 3.2% of all genes present in strain MBLA0099T were unique to the strain. The red carotenoid produced by strain MBLA0099T was subjected to spectrometric and chromatographic analyses and confirmed to be bacterioruberin as C50 carotenoid. Mevalonic acid, terpenoid backbone, and carotenoid biosynthesis pathway were annotated for strain MBLA0099T. The C50 carotenoid production by strain MBLA0099T was also enhanced under various stress conditions including relatively netural pH, high oxidative and salinity conditions. Additionally, the strain MBLA0099T-derived bacterioruberin showed the antioxidant activity with EC50 value of 12.29 µg/ml, based on the evaluation of DPPH free radical scavenging activity. The present study would be the first report on the identification of C50 carotenoid from the strain MBLA0099T representing a novel species of the genus Halorubrum, for which the name Halorubrum ruber sp. nov. is proposed. The typestrain used was MBLA0099T (= KCTC 4296T = JCM 34701T).


Assuntos
Halorubrum , Aminoácidos/genética , Antioxidantes/análise , Técnicas de Tipagem Bacteriana , Carotenoides , DNA Arqueal/genética , DNA Bacteriano , Ácidos Graxos/análise , Radicais Livres , Genômica , Halorubrum/genética , Ácido Mevalônico , Hibridização de Ácido Nucleico , Nucleotídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Água
12.
Arch Microbiol ; 204(9): 558, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974114

RESUMO

An isolate, designated MBLB2552T, was isolated from the gut of the honey bees (Apis mellifera L.) and identified as a member of the genus Paenibacillus based on the sequences of the 16S rRNA gene sequences. The most closely related species to strain MBLB2552T were Paenibacillus timonensis 2301032 T, Paenibacillus barengoltzii NBRC 101215 T, and Paenibacillus macerans IAM 12467 T, with similarity values of 98.1, 97.21 and 97.0%, respectively, based on 16S rRNA gene sequences. The genome size and G + C content of MBLB2552T were 5.2 Mb and 52.4%, respectively. The Ortho average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between strain MBLB2552T and the type strains of the closest species were below the species delineation threshold. Comparative genomic analysis showed that most core POGs of strain MBLB2552T and other related taxa were related to translation, ribosomal structure and biogenesis (J) and carbohydrate metabolism in the COG category and KEGG pathways, respectively. Strain MBLB2552T was Gram stain-positive, spore-forming, rod-shaped, facultative anaerobic, motile, and grew at 20‒45 °C in 0‒2% (w/v) NaCl at pH 6.0‒9.0. The major polar lipids identified were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, unidentified polar lipids, and an unidentified glycolipid. We propose that strain MBLB2552T represents the type strain of the genus Paenibacillus and its name Paenibacillus mellifer sp. nov. is proposed. The type of strain was MBLB2552T (= JCM 35371 T = KCTC 43386 T).


Assuntos
Ácidos Graxos , Paenibacillus , Animais , Técnicas de Tipagem Bacteriana , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
13.
Arch Microbiol ; 204(8): 474, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35829821

RESUMO

An isolate, designated strain KIGAM418T was isolated from marine mud below 192 m depth in the Hupo Basin, Republic of Korea. Strain KIGAM418T was Gram-stain positive, spore-forming, rod-shaped, facultatively anaerobic, and grew at 10‒45 °C, in 0‒2% (w/v) NaCl at pH 4.0‒12.0. The strain tested positive for catalase, oxidase, and motility. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KIGAM418T was related to the genus Fictibacillus. The strain showed the highest similarity to Fictibacillus rigui WPCB074T (98.0-98.1%) and Fictibacillus solisalsi YC1T (97.2-97.8%). The diagnostic diamino acid of the cell wall was meso-diaminopimelic acid. The major fatty acids were characterized as anteiso-C15:0 and iso-C15:0. Strain KIGAM418T possessed diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine as the major polar lipids and menaquinone-7 as the predominant menaquinone. The genome size and G + C content were 4.56 Mb and 43.2 mol%, respectively. According to predicted functional genes of the genome, the category of amino acid transport and metabolism was mainly distributed. Based on the polyphasic taxonomic data, strain KIGAM418T represents a novel species of the genus Fictibacillus, for which the name Fictibacillus marinisediminis sp. nov. is proposed. The type strain is KIGAM418T (= KCTC 43291 T = JCM 34437 T).


Assuntos
Nitratos , Fosfolipídeos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Microorganisms ; 10(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35630423

RESUMO

The newly isolated strain KIGAM252T was found to be facultatively anaerobic, Gram-stain-positive, spore-forming, and rod-shaped. They grew at 10-45 °C, pH 6.0-10.0, and were able to tolerate up to 6% NaCl in the growth medium. Phylogenetic analysis indicated that the KIGAM252T strain was related to the genus Metabacillus. The cell membrane fatty acid composition of strain KIGAM252T included C15:0 anteiso and C15:0 iso (25.6%) as the major fatty acids, and menaquinone 7 was the predominant isoprenoid quinone. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The size of the whole genome was 4.30 Mbp, and the G + C content of the DNA was 43.8%. Average nucleotide and amino acid identity and in silico DNA-DNA hybridization values were below the species delineation threshold. Pan-genomic analysis revealed that 15.8% of all genes present in strain KIGAM252T was unique to the strain. The analysis of the secondary biosynthetic pathway predicted the carotenoid synthetic gene cluster in the strain KIGAM252T. Based on these current polyphasic taxonomic data, strain KIGAM252T represents a novel species of the genus Metabacillus that produces carotenoids, for which we propose the name Metabacillus flavus sp. nov. The type of strain was KIGAM252T (=KCTC 43261T = JCM 34406T).

15.
J Microbiol Biotechnol ; 32(7): 892-901, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35637169

RESUMO

The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25°C incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.


Assuntos
Probióticos , Triterpenos , Animais , Carotenoides , Bovinos , Lactose
16.
World J Microbiol Biotechnol ; 38(4): 69, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257236

RESUMO

Human gut-originated lactic acid bacteria were cultivated, and high γ-aminobutyric acid (GABA)-producing Lactococcus garvieae MJF010 was identified. To date, despite the importance of GABA, no studies have investigated GABA-producing Lactococcus species, except for Lc. lactis. A recombinant glutamate decarboxylase of the strain MJF010 (rLgGad) was successfully expressed in Escherichia coli BL21(DE3) with a size of 53.9 kDa. rLgGad could produce GABA, which was verified using the silylation-derivative fragment ions of GABA. The purified rLgGad showed the highest GABA-producing activity at 35 °C and pH 5. rLgGad showed a melting temperature of 43.84 °C. At 30 °C, more than 80% of the activity was maintained even after 7 h; however, it rapidly decreased at 50 °C. The kinetic parameters, Km, Vmax, and kcat, of rLgGad were 2.94 mM, 0.023 mM/min, and 12.3 min- 1, respectively. The metal reagents of CaCl2, MgCl2, and ZnCl2 significantly had positive effects on rLgGad activity. However, most coenzymes including pyridoxal 5'-phosphate showed no significant effects on enzyme activity. In conclusion, this is the first report of Gad from Lc. garvieae species and provides important enzymatic information related to GABA biosynthesis in the Lactococcus genus.


Assuntos
Glutamato Descarboxilase , Lactococcus , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato Descarboxilase/química , Glutamato Descarboxilase/genética , Humanos , Lactococcus/genética , Lactococcus/metabolismo , Ácido gama-Aminobutírico
17.
Antonie Van Leeuwenhoek ; 114(12): 2065-2082, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34604935

RESUMO

Three novel halophilic archaea were isolated from seawater and sediment near Yeoungheungdo Island, Republic of Korea. The genome size and G + C content of the isolates MBLA0076T, MBLA0077T, and MBLA0078T were 3.56, 3.48, and 3.48 Mb and 61.7, 60.8, and 61.1 mol%, respectively. The three strains shared 98.5-99.5 % sequence similarity of the 16 S rRNA gene, whereas their sequence similarity to the 16 S rRNA gene of type strains was below 98.5 %. Phylogenetic analysis based on sequences of the 16 S rRNA and RNA polymerase subunit beta genes indicated that the isolates belonged to the genus Haloferax. The orthologous average nucleotide identity, average amino-acid identity, and in silico DNA-DNA hybridization values were below species delineation thresholds. Pan-genomic analysis indicated that the three novel strains and 11 reference strains had 8981 pan-orthologous groups in total. Fourteen Haloferax strains shared 1766 core pan-genome orthologous groups, which were mainly related to amino acid transport and metabolism. Cells of the three isolates were gram-negative, motile, red-pink pigmented, and pleomorphic. The strains grew optimally at 30 °C (MBLA0076T) and 40 °C (MBLA0077T, MBLA0078T) in the presence of 1.28 M (MBLA0077T) and 1.7 M (MBLA0076T, MBLA0078T) NaCl and 0.1 M (MBLA0077T), 0.2 M (MBLA0076T), and 0.3 M (MBLA0078T) MgCl2·6H2O at pH 7.0-8.0. Cells of all isolates lysed in distilled water; the minimum NaCl concentration necessary to prevent lysis was 0.43 M. The major polar lipids of the three strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, and sulphated diglycosyl archaeol-1. Based on their phenotypic and genotypic properties, MBLA0076T, MBLA0077T, and MBLA0078T were described as novel species of Haloferax, for which we propose the names Haloferax litoreum sp. nov., Haloferax marinisediminis sp. nov., and Haloferax marinum sp. nov., respectively. The respective type strains of these species are MBLA0076T (= KCTC 4288T = JCM 34,169T), MBLA0077T (= KCTC 4289T = JCM 34,170T), and MBLA0078T (= KCTC 4290T = JCM 34,171T).


Assuntos
Halobacteriaceae , Haloferax , DNA Arqueal/genética , Halobacteriaceae/genética , Haloferax/genética , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA
18.
Antonie Van Leeuwenhoek ; 114(7): 983-995, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864547

RESUMO

A novel Gram-staining-positive, short rod-shaped, non-motile, and non-pigmented actinobacterial strain (KIGAM211T) was isolated from kaolinite, a soft white clay mineral, collected from Sancheong in the Republic of Korea. On the basis of 16S rRNA gene sequence analysis, strain KIGAM211T was determined to belong to the genus Nocardioides and was most closely related to N. ungokensis UKS-03T (97.5% similarity). Cells could grow between 4 and 35 °C (optimum 30 °C), 0-3% (w/v) NaCl concentration (optimum 0%) and pH 5.5-8.5 (optimum 7.0) on R2A agar. Morphological appearance of colonies was cream-white, arranged singly or in groups. Biochemical characterization of strain KAGAM211T indicated that it could hydrolyze casein, gelatin, Tweens 40 and tyrosine. Furthermore, the strain was positive for both oxidase and catalase activity. Strain KIGAM211T was characterized chemotaxonomically by MK-8 (H4) as the predominant menaquinone and phosphatidylglycerol (PG) and phosphatidylinositol (PI) as the major polar lipids. Major fatty acids were iso-C16:0 and C18:1 ω9c. The Ortholog average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between strain KIGAM211T and its most closely related strains of the Nocardioides genus were < 82% and < 24%, respectively, suggesting that strain KIGAM211T represent a novel species. The whole genome size of KIGAM211T was 4.52 Mb, comprising a total of 4,294 genes with DNA G + C content of 72.3 mol%. The genome of strain KIGAM211T also comprises the biosynthetic gene cluster for alkylresorcinol as secondary metabolite. The results of physiological, taxonomical, phylogenetic, and whole genome analyses allowed for differentiation of strain KIGAM211T from the recognized Nocardioides species. Therefore, strain KIGAM211T is considered to represent a novel species, for which the name Nocardioides luti sp. nov. (type strain KIGAM211T = KCTC 49364T = JCM 33859T) is proposed.


Assuntos
Caulim , Nocardioides , Adolescente , Técnicas de Tipagem Bacteriana , Composição de Bases , Criança , DNA Bacteriano/genética , Ácido Diaminopimélico , Ácidos Graxos , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2
19.
Antonie Van Leeuwenhoek ; 114(7): 997-1011, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864546

RESUMO

A novel halophilic archaeon, strain MBLA0160T, was isolated from a solar saltern in Sorae, Republic of Korea. The cells are deep-red pigmented, Gram-negative, rod shaped, motile, and lysed in distilled water. The strain MBLA0160T grew at 25-45 °C (optimum 37 °C), in 15-30% (w/v) NaCl (optimum 20%) and 0.1-1.0 M MgCl2 (optimum 0.3-0.5 M) at pH 5.0-9.0 (optimum 7.0). Phylogenetic analysis based on the 16S rRNA sequence showed that this strain was related to two species within the genus Halobellus (Hbs.), with 98.4% and 95.8% similarity to Hbs. salinus CSW2.24.4 T and Hbs. clavatus TNN18T, respectively. The major polar lipids of the strain MBLA160T were phosphatidylglycerol, phosphatidylglycerol sulfate, and phosphatidylglycerol phosphate methyl ester. The genome size, G + C content, and N50 value of MBLA0160T were 3.49 Mb, 66.5 mol%, and 620,127 bp, respectively. According to predicted functional proteins of strain MBLA0160T, the highest category was amino acid transport and metabolism. Genome rapid annotation showed that amino acid and derivatives was the most subsystem feature counts. Pan-genomic analysis showed that strain MBLA0160T had 97 annotated unique KEGG, which were mainly included metabolism and environmental information processing. Ortholog average nucleotide identities (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between the strain MBLA0160T and other strains of the genus Halobellus were under 84,4% and 28.1%, respectively. The genome of strain MBLA0160T also contain the biosynthetic gene cluster for C50 carotenoid as secondary metabolite. Based on the phylogenetic, phenotypic, chemotaxonomic properties, and comparative genomic analyses, strain MBLA0160T is considered to represent a novel species of the genus Halobellus, for which the name Halobellus ruber sp. nov. is proposed. The type strain is MBLA0160T (= KCTC 4291 T = JCM 34172 T).


Assuntos
Halobacteriaceae , Composição de Bases , China , DNA Arqueal/genética , Halobacteriaceae/genética , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
20.
Food Sci Biotechnol ; 30(2): 267-276, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33732517

RESUMO

Amylosucrase (ASase, E.C. 2.4.1.4) is a powerful transglycosylation enzyme that can transfer glucose from sucrose to the hydroxyl (-OH) group of various compounds. In this study, recombinant ASases from Deinococcus geothermalis (DgAS) and Bifidobacterium thermophilum (BtAS) were used to synthesize biosurfactants based on the computational analysis of predicted docking simulations. Successful predictions of the binding affinities, conformations, and three-dimensional structures of three surfactants were computed from receptor-ligand binding modes. DgAS and BtAS were effective in the synthesis of biosurfactants from glyceryl caprylate, glyceryl caprate, and polyglyceryl-2 caprate. The results of the transglycosylation reaction were consistent for both ASases, with glyceryl caprylate acceptor showing the highest concentration, as confirmed by thin layer chromatography. Furthermore, the transglycosylation reactions of DgAS were more effective than those of BtAS. Among the three substrates, glyceryl caprylate glycoside and glyceryl caprate glycoside were successfully purified by liquid chromatography-mass spectrometry (LC-MS) with the corresponding molecular weights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA