Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Pharm ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946085

RESUMO

This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.

2.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
3.
J Pharm Sci ; 112(3): 751-759, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36202250

RESUMO

A dissolution-hollow fiber membrane (D-HFM) system with relatively high area/volume ratio was previously characterized and showed favorably high percent drug absorption. Also, it's in vitro permeation constant (Kp.Ç.) was close to in vivo human permeation constant (kp). The objective of the current study was to predict the in vivo human absorption profile and biopharmaceutic performance of five drug products using the D-HFM system. Four immediate-release (IR) and one extended-release (ER) solid oral dosage form were subjected to the D-HFM system. Tablets and capsule dissolution were also measured using USP apparatus II. Drug solutions were also subjected to D-HFM testing. Predicted and observed absorption profiles in D-HFM system showed close agreement for each solid oral dosage form. Levy-Polli plots from D-HFM system successfully predicted the four IR products to be low biopharmaceutic risk due to permeation rate limited or mixed dissolution/permeation rate limited absorption, and successfully predicted metoprolol ER product to be high biopharmaceutic risk due to dissolution rate limited absorption. These observations showed potential of the in vitro D-HFM system to be utilized in biopharmaceutics risk assessment of in vivo tablet and capsule performance.


Assuntos
Biofarmácia , Humanos , Solubilidade , Cápsulas , Comprimidos , Administração Oral
4.
J Pharm Sci ; 111(11): 3075-3087, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35830941

RESUMO

A dissolution-permeation system has potential to provide insight into the kinetic contributions of dissolution and permeation to overall drug absorption. The goals of the study were to characterize a dissolution-hollow fiber membrane (D-HFM) system and compare its resulting in vitro drug permeation constants (Kp') to in vivo clinical permeation constants (kp), for four drugs in various Biopharmaceutics Classification System (BCS) classes. Model predictions for D-HFM were made based on derived mixing tank (MT) and complete radial (CRM) flow models and independent measurement of membrane permeability. Experimental D-HFM studies included donor flow rate and donor volume sensitivity studies, and drug permeation profile studies. Additionally, for the four drugs, Kp'from D-HFM system was compared to (kp) from literature, as well as Kp' values from side-by-side diffusion cell and dissolution/Caco-2 system. Results show progressive D-HFM system development as a dissolution-permeation tool. Results indicated that D-HFM models using MT or CRM provided close agreement between predicted and observed drug permeation profiles. Drug permeation in D-HFM system was volume dependent, as predicted. Favorably, more drug permeated through the D-HFM system (10-20% in 60 min) compared to side-by-side diffusion cell (1%) and dissolution/Caco-2 system (0.1%). Kp' from D-HFM system was also closer to in vivo kp; the two other in vitro models showed lower Kp'. Overall, studies reflect that HFM module has potential to incorporate drug permeation into the in vitro assessment of in vivo tablet and capsule performance.


Assuntos
Biofarmácia , Absorção Intestinal , Biofarmácia/métodos , Células CACO-2 , Humanos , Permeabilidade , Solubilidade , Comprimidos
5.
Pharm Res ; 39(8): 1681-1700, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585448

RESUMO

The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.


Assuntos
Biofarmácia , Modelos Biológicos , Administração Oral , Desenvolvimento de Medicamentos , Humanos , Solubilidade , Equivalência Terapêutica
6.
Pharm Res ; 39(8): 1669-1680, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35552984

RESUMO

Model-informed drug development (MIDD) is a powerful approach to support drug development and regulatory review. There is a rich history of MIDD applications at the U.S. Food and Drug Administration (FDA). MIDD applications span across the life cycle of the development of new drugs, generics, and biologic products. In new drug development, MIDD approaches are often applied to inform clinical trial design including dose selection/optimization, aid in the evaluation of critical regulatory review questions such as evidence of effectiveness, and development of policy. In the biopharmaceutics space, we see a trend for increasing role of computational modeling to inform formulation development and help strategize future in vivo studies or lifecycle plans in the post approval setting. As more information and knowledge becomes available pre-approval, quantitative mathematical models are becoming indispensable in supporting generic drug development and approval including complex generic drug products and are expected to help reduce overall time and cost. While the application of MIDD to inform the development of cell and gene therapy products is at an early stage, the potential for future application of MIDD include understanding and quantitative evaluation of information related to biological activity/pharmacodynamics, cell expansion/persistence, transgene expression, immune response, safety, and efficacy. With exciting innovations on the horizon, broader adoption of MIDD is poised to revolutionize drug development for greater patient and societal benefit.


Assuntos
Desenvolvimento de Medicamentos , Medicamentos Genéricos , Animais , Aprovação de Drogas , Humanos , Estágios do Ciclo de Vida , Preparações Farmacêuticas , Estados Unidos , United States Food and Drug Administration
7.
AAPS J ; 24(1): 35, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165814

RESUMO

The objective of this study was to assess how solubility and dissolution profile comparisons under different pH conditions can be used to predict gastric pH-mediated drug-drug interaction (DDI) potential. We collected information for new molecular entities (NMEs) approved from 2003 to 2019 by the U.S. Food and Drug Administration (FDA) that had dedicated clinical DDI studies with acid-reducing agents (ARAs). Among these, 67 NMEs with solubility under different pHs and dissolution profiles generated in pH 1.2, 4.5, and 6.8 aqueous media were included for analysis. Similarity factor (f2) was used to compare dissolution profiles at different pHs for pH-mediated DDI prediction (e.g., f2<50 predicts positive DDI). Prediction accuracy was calculated based on the outcome comparison between predicted and observed DDIs. Based on dissolution profile comparisons and observed DDI data, weak base drugs (WBDs) (n = 49) showed 72.5% prediction accuracy under the fasted conditions, and 66.7% prediction accuracy under fed conditions. While using solubility and clinical dose for prediction, the prediction accuracy was 80% under fasted conditions and 66.7% under fed conditions, respectively. Comparison of dissolution profiles generated at pH 1.2, 4.5, and 6.8 can be used to predict gastric pH-mediated DDI potential for WBDs. It demonstrated comparable prediction accuracy under both fasted and fed conditions when compared to the prediction using solubility and clinical dose. Furthermore, dissolution profile comparison could add an additional understanding of possible impact of pH change on the release behavior of the drug product. Graphical abstract.


Assuntos
Solubilidade , Administração Oral , Interações Medicamentosas , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas
9.
AAPS J ; 23(2): 31, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619657

RESUMO

Physiologically based pharmacokinetic (PBPK) absorption modeling and simulation is increasingly used as a tool in drug product development, not only in support of clinical pharmacology applications (e.g., drug-drug interaction, dose selection) but also from quality perspective, enhancing drug product understanding. This report provides a summary of the status and the application of PBPK absorption modeling and simulation in new drug application (NDA) submissions to the U.S. Food and Drug Administration to support drug product quality (e.g., clinically relevant dissolution specifications, active pharmaceutical ingredient (API) particle size distribution specifications). During the 10 years from 2008 to 2018, a total of 24 NDA submissions included the use of PBPK absorption modeling and simulations for biopharmaceutics-related assessment. In these submissions, PBPK absorption modeling and simulation served as an impactful tool in establishing the relationship of critical quality attributes (CQAs) including formulation variables, specifically in vitro dissolution, to the in vivo performance. This article also summarizes common practices in PBPK approaches and proposes future directions for the use of PBPK absorption modeling and simulation in drug product quality assessment.Graphical abstract.


Assuntos
Aprovação de Drogas , Desenvolvimento de Medicamentos/métodos , Absorção Gastrointestinal/fisiologia , Modelos Biológicos , United States Food and Drug Administration/normas , Química Farmacêutica/normas , Simulação por Computador/normas , Desenvolvimento de Medicamentos/normas , Liberação Controlada de Fármacos/fisiologia , Humanos , Taxa de Depuração Metabólica/fisiologia , Distribuição Tecidual/fisiologia , Estados Unidos
10.
J Pharm Sci ; 110(2): 567-583, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32956678

RESUMO

This workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions. After introducing the objectives of the workshop and the expectations from the breakout sessions, Day 1 of the workshop focused on the best practices and challenges in measuring in vitro inputs needed for modeling, such as the drug solubility, the dissolution rate of the drug product, potential precipitation of the drug and drug permeability. This paper reports the podium presentations and summarizes breakout session discussions related to A) the best strategies for determining solubility, supersaturation and critical supersaturation; B) the best strategies for the development of biopredictive (clinically relevant) dissolution methods; C) the challenges associated with describing gastro-intestinal systems parameters such as mucus, liquid volume and motility; and D) the challenges with translating biopharmaceutical measures of drug permeability along the gastrointestinal tract to a meaningful model parameter.


Assuntos
Modelos Biológicos , Relatório de Pesquisa , Administração Oral , Biofarmácia , Desenvolvimento de Medicamentos , Absorção Intestinal , Solubilidade
11.
AAPS J ; 22(5): 107, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32779046

RESUMO

Bioequivalence (BE) studies support the approval and clinical use of both new drug and generic drug products. Virtual BE studies have been conducted using physiologically based pharmacokinetic absorption models (PBPK AMs) to aid the evaluations of generic drug products. The aim of the current study is to determine the dissolution boundary for maintaining BE between the test and reference oseltamivir phosphate (OP) drug products using the PBPK AM-based virtual BE studies in adults and pediatrics. The adult PBPK AM for OP and its metabolite oseltamivir carboxylate (OC) are developed and verified/validated using intravenous and oral data from multiple generic OP products. The pediatric PBPK AM is extrapolated from the adult PBPK AM. The virtual BE analysis is conducted using simulated PK profiles from the reference products and the generic products with theoretical dissolution profiles as inputs. Results indicate that the generic products with 10% slower dissolution profile than the pivotal reference bio-batch could still maintain BE to the reference in adults. In contrast, a stringent trend of dissolution boundary is observed for pediatrics (6% slower for adolescents, 4% slower for 0-2-month neonates) to maintain BE. This study addresses the important applications of PBPK AM in evaluating BE in different age populations, mitigating risk of formulation/batch changes, and providing a quantitative basis for setting clinically relevant dissolution specifications for OP and OC in both adults and pediatrics.


Assuntos
Antivirais/farmacocinética , Modelos Teóricos , Oseltamivir/farmacocinética , Absorção Fisiológica , Adulto , Criança , Humanos , Equivalência Terapêutica
12.
CPT Pharmacometrics Syst Pharmacol ; 9(8): 456-465, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32633893

RESUMO

Weak-base drugs are susceptible to drug-drug interactions (DDIs) when coadministered with gastric acid-reducing agents (ARAs). We developed PBPK models to evaluate the potential of such pH-dependent DDIs for four weak-base drugs, i.e., tapentadol, darunavir, erlotinib, and saxagliptin. The physiologically-based pharmacokinetic (PBPK) models of these drugs were first optimized using pharmacokinetic (PK) data following oral administration without ARAs, which were then verified with data from additional PK studies in the presence and absence of food. The models were subsequently used to predict the extent of DDIs with ARA coadministration. Sensitivity analysis was conducted to explore the impact of gastric pH on quantitative prediction of drug exposure in the presence of ARA. The results suggested that the PBPK models developed could adequately describe the lack of the effect of ARA on the PK of tapentadol, darunavir, and saxagliptin and could qualitatively predict the effect of ARA in reducing the absorption of erlotinib. Further studies involving more drugs with positive pH-dependent DDIs are needed to confirm the findings and broaden our knowledge base to further improve the utilization of PBPK modeling to evaluate pH-dependent DDI potential.


Assuntos
Interações Medicamentosas , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Simulação por Computador , Interações Alimento-Droga , Humanos , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/química
14.
AAPS J ; 21(2): 29, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746576

RESUMO

This publication summarizes the proceedings of day 2 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Patient-centric drug product development from a drug product quality perspective necessitates the establishment of clinically relevant drug product specifications via an in vitro-in vivo link. Modeling and simulation offer a path to establish this link; in this regard, physiologically based modeling has been implemented successfully to support regulatory decision-making and drug product labeling. In this manuscript, case studies of physiologically based biopharmaceutics modeling (PBBM) applied to drug product quality are presented and summarized. These case studies exemplify a possible path to achieve an in vitro-in vivo link and encompass (a) development of biopredictive dissolution methods to support biowaivers, (b) model-informed formulation selection, (c) predicting clinical formulation performance, and (d) defining a safe space for regulatory flexibility via virtual bioequivalence (BE). Workflows for the development and verification of absorption models/PBBM and for the establishment of a safe space using dissolution as an input are described with examples. Breakout session discussions on topics, such as current challenges and some best practices in model development and verification, are included as part of the Supplementary material.


Assuntos
Produtos Biológicos/farmacocinética , Biofarmácia/métodos , Desenvolvimento de Medicamentos/métodos , Modelos Biológicos , Absorção Fisiológica , Biofarmácia/normas , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/normas , Congressos como Assunto , Desenvolvimento de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Rotulagem de Medicamentos/normas , Liberação Controlada de Fármacos , Humanos , Solubilidade , Equivalência Terapêutica
15.
AAPS J ; 20(6): 93, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30151612

RESUMO

This publication summarizes the proceedings of day 3 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Specifically, this publication discusses the current approaches in building clinical relevance into drug product development for solid oral dosage forms, along with challenges that both industry and regulatory agencies are facing in setting clinically relevant drug product specifications (CRDPS) as presented at the workshop. The concept of clinical relevance is a multidisciplinary effort which implies an understanding of the relationship between the critical quality attributes (CQAs) and their impact on predetermined clinical outcomes. Developing this level of understanding, in many cases, requires introducing deliberate but meaningful variations into the critical material attributes (CMAs) and critical process parameters (CPPs) to establish a relationship between the resulting in vitro dissolution/release profiles and in vivo PK performance, a surrogate for clinical outcomes. Alternatively, with the intention of improving the efficiency of the drug product development process by limiting the burden of conducting in vivo studies, this understanding can be either built, or at least enhanced, through in silico efforts, such as IVIVC and physiologically based pharmacokinetic (PBPK) absorption modeling and simulation (M&S). These approaches enable dissolution testing to establish safe boundaries and reject drug product batches falling outside of the established safe range (e.g., due to inadequate in vivo performance) enabling the method to become clinically relevant. Ultimately, these efforts contribute towards patient-centric drug product development and allow regulatory flexibility throughout the lifecycle of the drug product.


Assuntos
Química Farmacêutica/métodos , Congressos como Assunto , Desenvolvimento de Medicamentos , Liberação Controlada de Fármacos , Pesquisa Farmacêutica/métodos , Simulação por Computador , Modelos Biológicos , Solubilidade
16.
Mol Pharm ; 14(12): 4334-4338, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29076742

RESUMO

The FDA guidance on application of the biopharmaceutics classification system (BCS) for waiver of in vivo bioequivalence (BE) studies was issued in August 2000. Since then, this guidance has created worldwide interest among biopharmaceutical scientists in regulatory agencies, academia, and industry toward its implementation and further expansion. This article describes how the review implementation of this guidance was undertaken at the FDA and results of these efforts over last dozen years or so across the new, and the generic, drug domains are provided. Results show that greater than 160 applications were approved, or tentatively approved, based on the BCS approach across multiple therapeutic areas; an additional significant finding was that at least 50% of these approvals were in the central nervous system (CNS) area. These findings indicate a robust utilization of the BCS approach toward reducing unnecessary in vivo BE studies and speeding up availability of high quality pharmaceutical products. The article concludes with a look at the adoption of this framework by regulatory and health policy organizations across the globe, and FDA's current thinking on areas of improvement of this guidance.


Assuntos
Biofarmácia/normas , Aprovação de Drogas , Indústria Farmacêutica/normas , Medicamentos Genéricos/farmacocinética , Disponibilidade Biológica , Biofarmácia/legislação & jurisprudência , Ensaios Clínicos como Assunto/economia , Ensaios Clínicos como Assunto/normas , Redução de Custos , Indústria Farmacêutica/economia , Indústria Farmacêutica/legislação & jurisprudência , Medicamentos Genéricos/classificação , Medicamentos Genéricos/economia , Guias como Assunto , Humanos , Absorção Intestinal/fisiologia , Permeabilidade , Solubilidade , Equivalência Terapêutica , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência , United States Food and Drug Administration/normas
17.
AAPS J ; 18(6): 1406-1417, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650190

RESUMO

This review presents scientific and regulatory considerations for the development of solid oral modified release (MR) drug products. It includes a rationale for patient-focused development based on Quality-by-Design (QbD) principles. Product and process understanding of MR products includes identification and risk-based evaluation of critical material attributes (CMAs), critical process parameters (CPPs), and their impact on critical quality attributes (CQAs) that affect the clinical performance. The use of various biopharmaceutics tools that link the CQAs to a predictable and reproducible clinical performance for patient benefit is emphasized. Product and process understanding lead to a more comprehensive control strategy that can maintain product quality through the shelf life and the lifecycle of the drug product. The overall goal is to develop MR products that consistently meet the clinical objectives while mitigating the risks to patients by reducing the probability and increasing the detectability of CQA failures.


Assuntos
Biofarmácia/métodos , Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Controle de Qualidade , Administração Oral , Animais , Biofarmácia/legislação & jurisprudência , Química Farmacêutica/legislação & jurisprudência , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/metabolismo , Descoberta de Drogas/legislação & jurisprudência , Humanos , Solubilidade
18.
AAPS J ; 18(6): 1379-1390, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27480319

RESUMO

In the past two decades, in vitro in vivo correlation (IVIVC) has been considered an important tool for supporting biowaivers, setting dissolution acceptance criteria, and more recently in the Quality by Design (QbD) framework promoting the establishment of clinically meaningful drug product specifications using dissolution as the endpoint. Based on our review experience at the FDA, for the purposes of this article, we analyzed the current state of regulatory submissions containing IVIVC approaches and discussed the successes and failures from the perspectives of study design to methodology. In the past decade, the overall acceptance rate of the IVIVC submissions is about 40%. Moreover, the number of IVIVC studies seen in the submissions per year is not increasing. Establishing clinically meaningful drug product specifications through the linkages between the identified critical quality attributes and in vivo performance is key for developing a quality drug product. To achieve this goal, there is an imminent need for addressing the issues behind a low success rate in IVIVC development. The results from the current analysis revealed that special considerations should be taken in areas such as (1) selection of appropriate number/kind of formulations for IVIVC development/validation, (2) construction of exploratory plots to guide model building and selection, (3) investigation of the reasons of inconclusive predictability, (4) improvement on the quality and richness of the data, and (5) avoidance of over parameterization. The development and incorporation of biopredictive dissolution methods and the use of non-conventional approaches, including mechanistic/physiologically based approaches, should be explored to increase the likelihood of IVIVC success.


Assuntos
Química Farmacêutica/legislação & jurisprudência , Aprovação de Drogas/legislação & jurisprudência , Drogas em Investigação , Técnicas In Vitro , United States Food and Drug Administration/legislação & jurisprudência , Animais , Química Farmacêutica/tendências , Bases de Dados Factuais/tendências , Aprovação de Drogas/métodos , Drogas em Investigação/uso terapêutico , Humanos , Técnicas In Vitro/tendências , Estados Unidos , United States Food and Drug Administration/tendências
19.
AAPS J ; 18(3): 578-88, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928450

RESUMO

Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.


Assuntos
Biofarmácia/métodos , Química Farmacêutica/métodos , Aprovação de Drogas/métodos , Liberação Controlada de Fármacos , Administração Oral , Disponibilidade Biológica , Biofarmácia/legislação & jurisprudência , Química Farmacêutica/legislação & jurisprudência , Aprovação de Drogas/legislação & jurisprudência , Humanos , Solubilidade , Comprimidos , Equivalência Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA