Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Res Sq ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746162

RESUMO

Purpose: Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. Procedure: To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. Results: The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. Conclusions: Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.

2.
J Nucl Med ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697672

RESUMO

Fibroblast activation protein (FAP), expressed in the tumor microenvironment of a variety of cancers, has become a target of novel PET tracers. The purpose of this report is to evaluate the imaging characteristics of 68Ga-FAP-2286, present the first-to our knowledge-dosimetry analysis to date, and compare the agent with 18F-FDG and FAPI compounds. Methods: Patients were administered 219 ± 43 MBq of 68Ga-FAP-2286 and scanned after 60 min. Uptake was measured in up to 5 lesions per patient and within the kidneys, spleen, liver, and mediastinum (blood pool). Absorbed doses were evaluated using MIM Encore and OLINDA/EXM version 1.1 using the International Commission on Radiological Protection publication 103 tissue weighting factor. Results: Forty-six patients were imaged with 68Ga-FAP-2286 PET. The highest average uptake was seen in sarcoma, cholangiocarcinoma, and colon cancer. The lowest uptake was found in lung cancer and testicular cancer. The average SUVmax was significantly higher on 68Ga-FAP-2286 PET than on 18F-FDG PET in cholangiocarcinoma (18.2 ± 6.4 vs. 9.1 ± 5.0, P = 0.007), breast cancer (11.1 ± 6.8 vs. 4.1 ± 2.2, P < 0.001), colon cancer (13.8 ± 2.2 vs. 7.6 ± 1.7, P = 0.001), hepatocellular carcinoma (9.3 ± 3.5 vs. 4.7 ± 1.3, P = 0.01), head and neck cancer (11.3 ± 3.5 vs. 7.6 ± 5.5, P = 0.04), and pancreatic adenocarcinoma (7.4 ± 1.8 vs. 3.7 ± 1.0, P = 0.01). The total-body effective dose was estimated at 1.16E-02 mSv/MBq, with the greatest absorbed organ dose in the urinary bladder wall (9.98E-02 mGy/MBq). Conclusion: 68Ga-FAP-2286 biodistribution, dosimetry, and tumor uptake were similar to those of previously reported FAPI compounds. Additionally,68Ga-FAP-2286 PET had consistently higher uptake than 18F-FDG PET. These results are especially promising in the setting of small-volume disease and differentiating tumor from inflammatory uptake.

3.
Adv Healthc Mater ; : e2304618, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700450

RESUMO

The tumor uptake of large non-targeted nanocarriers primarily occurs through passive extravasation, known as the enhanced permeability and retention (EPR) effect. Prior studies demonstrated improved tumor uptake and retention of 4-arm 40 kDa star polyethylene glycol (StarPEG) polymers for cancer imaging by adding prostate-specific membrane antigen (PSMA) targeting small molecule ligands. To test PSMA-targeted delivery and therapeutic efficacy, StarPEG nanodrugs with/without three copies of PSMA-targeting ligands, ACUPA, are designed and synthesized. For single-photon emission computed tomography (SPECT) imaging and therapy, each nanocarrier is labeled with 177Lu using DOTA radiometal chelator. The radiolabeled nanodrugs, [177Lu]PEG-(DOTA)1 and [177Lu]PEG-(DOTA)1(ACUPA)3, are evaluated in vitro and in vivo using PSMA+ PC3-Pip and/or PSMA- PC3-Flu cell lines, subcutaneous xenografts and disseminated metastatic models. The nanocarriers are efficiently radiolabeled with 177Lu with molar activities 10.8-15.8 MBq/nmol. Besides excellent in vitro PSMA binding affinity (kD = 51.7 nM), the targeted nanocarrier, [177Lu]PEG-(DOTA)1(ACUPA)3, demonstrated excellent in vivo SPECT imaging contrast with 21.3% ID/g PC3-Pip tumors uptake at 192 h. Single doses of 18.5 MBq [177Lu]PEG-(DOTA)1(ACUPA)3 showed complete resolution of the PC3-Pip xenografts observed up to 138 days. Along with PSMA-targeted excellent imaging contrast, these results demonstrated high treatment efficacy of [177Lu]PEG-(DOTA)1(ACUPA)3 for prostate cancer, with potential for clinical translation.

4.
Radiol Imaging Cancer ; 6(2): e230082, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38551406

RESUMO

Purpose To compare quantitative measures of tumor metabolism and perfusion using fluorine 18 (18F) fluorodeoxyglucose (FDG) dedicated breast PET (dbPET) and breast dynamic contrast-enhanced (DCE) MRI during early treatment with neoadjuvant chemotherapy (NAC). Materials and Methods Prospectively collected DCE MRI and 18F-FDG dbPET examinations were analyzed at baseline (T0) and after 3 weeks (T1) of NAC in 20 participants with 22 invasive breast cancers. FDG dbPET-derived standardized uptake value (SUV), metabolic tumor volume, and total lesion glycolysis (TLG) and MRI-derived percent enhancement (PE), signal enhancement ratio (SER), and functional tumor volume (FTV) were calculated at both time points. Differences between FDG dbPET and MRI parameters were evaluated after stratifying by receptor status, Ki-67 index, and residual cancer burden. Parameters were compared using Wilcoxon signed rank and Mann-Whitney U tests. Results High Ki-67 tumors had higher baseline SUVmean (difference, 5.1; P = .01) and SUVpeak (difference, 5.5; P = .04). At T1, decreases were observed in FDG dbPET measures (pseudo-median difference T0 minus T1 value [95% CI]) of SUVmax (-6.2 [-10.2, -2.6]; P < .001), SUVmean (-2.6 [-4.9, -1.3]; P < .001), SUVpeak (-4.2 [-6.9, -2.3]; P < .001), and TLG (-29.1 mL3 [-71.4, -6.8]; P = .005) and MRI measures of SERpeak (-1.0 [-1.3, -0.2]; P = .02) and FTV (-11.6 mL3 [-22.2, -1.7]; P = .009). Relative to nonresponsive tumors, responsive tumors showed a difference (95% CI) in percent change in SUVmax of -34.3% (-55.9%, 1.5%; P = .06) and in PEpeak of -42.4% (95% CI: -110.5%, 8.5%; P = .08). Conclusion 18F-FDG dbPET was sensitive to early changes during NAC and provided complementary information to DCE MRI that may be useful for treatment response evaluation. Keywords: Breast, PET, Dynamic Contrast-enhanced MRI Clinical trial registration no. NCT01042379 Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Humanos , Feminino , Fluordesoxiglucose F18/uso terapêutico , Terapia Neoadjuvante , Antígeno Ki-67 , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Imageamento por Ressonância Magnética
5.
Theranostics ; 14(4): 1344-1360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389832

RESUMO

Rationale: 225Ac, a long-lived α-emitter with a half-life of 9.92 days, has garnered significant attention as a therapeutic radionuclide when coupled with monoclonal antibodies and other targeting vectors. Nevertheless, its clinical utility has been hampered by potential off-target toxicity, a lack of optimized chelators for 225Ac, and limitations in radiolabeling methods. In a prior study evaluating the effectiveness of CD46-targeted radioimmunotherapy, we found great therapeutic efficacy but also significant toxicity at higher doses. To address these challenges, we have developed a radioimmunoconjugate called 225Ac-Macropa-PEG4-YS5, incorporating a stable PEGylated linker to maximize tumoral uptake and increase tumor-to-background ratios. Our research demonstrates that this conjugate exhibits greater anti-tumor efficacy while minimizing toxicity in prostate cancer 22Rv1 tumors. Methods: We synthesized Macropa.NCS and Macropa-PEG4/8-TFP esters and prepared Macropa-PEG0/4/8-YS5 (with nearly ~1:1 ratio of macropa chelator to antibody YS5) as well as DOTA-YS5 conjugates. These conjugates were then radiolabeled with 225Ac in a 2 M NH4OAc solution at 30 °C, followed by purification using YM30K centrifugal purification. Subsequently, we conducted biodistribution studies and evaluated antitumor activity in nude mice (nu/nu) bearing prostate 22Rv1 xenografts in both single-dose and fractionated dosing studies. Micro-PET imaging studies were performed with 134Ce-Macropa-PEG0/4/8-YS5 in 22Rv1 xenografts for 7 days. Toxicity studies were also performed in healthy athymic nude mice. Results: As expected, we achieved a >95% radiochemical yield when labeling Macropa-PEG0/4/8-YS5 with 225Ac, regardless of the chelator ratios (ranging from 1 to 7.76 per YS5 antibody). The isolated yield exceeded 60% after purification. Such high conversions were not observed with the DOTA-YS5 conjugate, even at a higher ratio of 8.5 chelators per antibody (RCY of 83%, an isolated yield of 40%). Biodistribution analysis at 7 days post-injection revealed higher tumor uptake for the 225Ac-Macropa-PEG4-YS5 (82.82 ± 38.27 %ID/g) compared to other conjugates, namely 225Ac-Macropa-PEG0/8-YS5 (38.2 ± 14.4/36.39 ± 12.4 %ID/g) and 225Ac-DOTA-YS5 (29.35 ± 7.76 %ID/g). The PET Imaging of 134Ce-Macropa-PEG0/4/8-YS5 conjugates resulted in a high tumor uptake, and tumor to background ratios. In terms of antitumor activity, 225Ac-Macropa-PEG4-YS5 exhibited a substantial response, leading to prolonged survival compared to 225Ac-DOTA-YS5, particularly when administered at 4.625 kBq doses, in single or fractionated dose regimens. Chronic toxicity studies observed mild to moderate renal toxicity at 4.625 and 9.25 kBq doses. Conclusions: Our study highlights the promise of 225Ac-Macropa-PEG4-YS5 for targeted alpha particle therapy. The 225Ac-Macropa-PEG4-YS5 conjugate demonstrates improved biodistribution, reduced off-target binding, and enhanced therapeutic efficacy, particularly at lower doses, compared to 225Ac-DOTA-YS5. Incorporating theranostic 134Ce PET imaging further enhances the versatility of macropa-PEG conjugates, offering a more effective and safer approach to cancer treatment. Overall, this methodology has a high potential for broader clinical applications.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Camundongos Nus , Distribuição Tecidual , Compostos Radiofarmacêuticos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Quelantes , Proteína Cofatora de Membrana
6.
Res Sq ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38313265

RESUMO

Background: Neuroblastoma is the most common extra-cranial pediatric solid tumor. 131I-metaiodobenzylguanidine (MIBG) is a targeted radiopharmaceutical highly specific for neuroblastoma tumors, providing potent radiotherapy to widely metastatic disease. Aurora kinase A (AURKA) plays a role in mitosis and stabilization of the MYCN protein in neuroblastoma. Here we explore whether AURKA inhibition potentiates a response to MIBG therapy. Results: Using an in vivo model of high-risk neuroblastoma, we demonstrated a marked combinatorial effect of 131I-MIBG and alisertib on tumor growth. In MYCN amplified cell lines, the combination of radiation and an AURKA A inhibitor increased DNA damage and apoptosis and decreased MYCN protein levels. Conclusion: The combination of AURKA inhibition with 131I-MIBG treatment is active in resistant neuroblastoma models and is a promising clinical approach in high-risk neuroblastoma.

7.
Med Phys ; 51(3): 2320-2333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345134

RESUMO

BACKGROUND: Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE: Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS: Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS: Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS: We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.


Assuntos
Glioblastoma , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Eficiência Biológica Relativa , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Planejamento da Radioterapia Assistida por Computador/métodos , Hipóxia/radioterapia , Oxigênio , Dosagem Radioterapêutica
8.
Clin Cancer Res ; 30(5): 1009-1021, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109209

RESUMO

PURPOSE: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.


Assuntos
Mieloma Múltiplo , Masculino , Humanos , Animais , Camundongos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , Medicina de Precisão , Actínio , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos , Proteína Cofatora de Membrana
9.
Biosens Bioelectron ; 247: 115956, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145595

RESUMO

Cancer radiopharmaceutical therapies (RPTs) have demonstrated great promise in the treatment of neuroendocrine and prostate cancer, giving hope to late-stage metastatic cancer patients with currently very few treatment options. These therapies have sparked a large amount of interest in pre-clinical research due to their ability to target metastatic disease, with many research efforts focused towards developing and evaluating targeted RPTs for different cancer types in in vivo models. Here we describe a method for monitoring real-time in vivo binding kinetics for the pre-clinical evaluation of cancer RPTs. Recognizing the significant heterogeneity in biodistribution of RPTs among even genetically identical animal models, this approach offers long-term monitoring of the same in vivo organism without euthanasia in contrast to ex vivo tissue dosimetry, while providing high temporal resolution with a low-cost, easily assembled platform, that is not present in small-animal SPECT/CTs. The method utilizes the developed optical fiber-based γ-photon biosensor, characterized to have a wide linear dynamic range with Lutetium-177 (177Lu) activity (0.5-500 µCi/mL), a common radioisotope used in cancer RPT. The probe's ability to track in vivo uptake relative to SPECT/CT and ex vivo dosimetry techniques was verified by administering 177Lu-PSMA-617 to mouse models bearing human prostate cancer tumors (PC3-PIP, PC3-flu). With this method for monitoring RPT uptake, it is possible to evaluate changes in tissue uptake at temporal resolutions <1 min to determine RPT biodistribution in pre-clinical models and better understand dose relationships with tumor ablation, toxicity, and recurrence when attempting to move therapies towards clinical trial validation.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Glutamato Carboxipeptidase II , Distribuição Tecidual , Fibras Ópticas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Lutécio/química
10.
Int J Radiat Oncol Biol Phys ; 118(5): 1575-1584, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38122990

RESUMO

PURPOSE: Targeted radionuclide therapy (TRT), whereby a tumor-targeted molecule is linked to a therapeutic beta- or alpha-emitting radioactive nuclide, is a promising treatment modality for patients with metastatic cancer, delivering radiation systemically. However, patients still progress due to suboptimal dosing, driven by the large patient-to-patient variability. Therefore, the ability to continuously monitor the real-time dose deposition in tumors and organs at risk provides an additional dimension of information during clinical trials that can enable insights into better strategies to personalize TRT. METHODS AND MATERIALS: Here, we present a single beta-particle sensitive dosimeter consisting of a 0.27-mm3 monolithic silicon chiplet directly implanted into the tumor. To maximize the sensitivity and have enough detection area, minimum-size diodes (1 µm2) are arrayed in 64 × 64. Signal amplifiers, buffers, and on-chip memories are all integrated in the chip. For verification, PC3-PIP (prostate-specific membrane antigen [PSMA]+) and PC3-flu (PSMA-) cell lines are injected into the left and right flanks of the mice, respectively. The devices are inserted into each tumor and measure activities at 5 different time points (0-2 hours, 7-9 hours, 12-14 hours, 24-26 hours, and 48-50 hours) after 177Lu-PSMA-617 injections. Single-photon emission computed tomography/computed tomography scans are used to verify measured data. RESULTS: With a wide detection range from 0.013 to 8.95 MBq/mL, the system is capable of detecting high tumor uptake as well as low doses delivered to organs at risk in real time. The measurement data are highly proportional (R2 > 0.99) to the 177Lu-PSMA-617 activity. The in vivo measurement data agree well with the single-photon emission computed tomography/computed tomography results within acceptable errors (±1.5%ID/mL). CONCLUSIONS: Given the recent advances in clinical use of TRT in prostate cancer, the proposed system is verified in a prostate cancer mouse model using 177Lu-PSMA-617.


Assuntos
Neoplasias da Próstata , Radioisótopos , Masculino , Humanos , Animais , Camundongos , Radioisótopos/uso terapêutico , Neoplasias da Próstata/patologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Lutécio/uso terapêutico , Antígeno Prostático Específico
11.
ACS Sens ; 8(12): 4554-4565, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992233

RESUMO

Imaging infections in patients is challenging using conventional methods, motivating the development of positron emission tomography (PET) radiotracers targeting bacteria-specific metabolic pathways. Numerous techniques have focused on the bacterial cell wall, although peptidoglycan-targeted PET tracers have been generally limited to the short-lived carbon-11 radioisotope (t1/2 = 20.4 min). In this article, we developed and tested new tools for infection imaging using an amino sugar component of peptidoglycan, namely, derivatives of N-acetyl muramic acid (NAM) labeled with the longer-lived fluorine-18 (t1/2 = 109.6 min) radioisotope. Muramic acid was reacted directly with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) to afford the enantiomeric NAM derivatives (S)-[18F]FMA and (R)-[18F]FMA. Both diastereomers were easily isolated and showed robust accumulation by human pathogens in vitro and in vivo, including Staphylococcus aureus. These results form the basis for future clinical studies using fluorine-18-labeled NAM-derived PET radiotracers.


Assuntos
Ácidos Murâmicos , Peptidoglicano , Humanos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor , Bactérias , Parede Celular
12.
Phys Med Biol ; 68(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918026

RESUMO

Objective.In our previous work on image reconstruction for single-layer collimatorless scintigraphy, we developed the min-min weighted robust least squares (WRLS) optimization algorithm to address the challenge of reconstructing images when both the system matrix and the projection data are uncertain. Whereas the WRLS algorithm has been successful in two-dimensional (2D) reconstruction, expanding it to three-dimensional (3D) reconstruction is difficult since the WRLS optimization problem is neither smooth nor strongly-convex. To overcome these difficulties and achieve robust image reconstruction in the presence of system uncertainties and projection noise, we propose a generalized iterative method based on the maximum likelihood expectation maximization (MLEM) algorithm, hereinafter referred to as the Masked-MLEM algorithm.Approach.In the Masked-MLEM algorithm, only selected subsets ('masks') from the system matrix and the projection contribute to the image update to satisfy the constraints imposed by the system uncertainties. We validate the Masked-MLEM algorithm and compare it to the standard MLEM algorithm using experimental data obtained from both collimated and uncollimated imaging instruments, including parallel-hole collimated SPECT, 2D collimatorless scintigraphy, and 3D collimatorless tomography. Additionally, we conduct comprehensive Monte Carlo simulations for 3D collimatorless tomography to further validate the effectiveness of the Masked-MLEM algorithm in handling different levels of system uncertainties.Main results.The Masked-MLEM and standard MLEM reconstructions are similar in cases with negligible system uncertainties, whereas the Masked-MLEM algorithm outperforms the standard MLEM algorithm when the system matrix is an approximation. Importantly, the Masked-MLEM algorithm ensures reliable image reconstruction across varying levels of system uncertainties.Significance.With a good choice of system uncertainty and without requiring accurate knowledge of the actual system matrix, the Masked-MLEM algorithm yields more robust image reconstruction than the standard MLEM algorithm, effectively reducing the likelihood of erroneously reconstructing higher activities in regions without radioactive sources.


Assuntos
Processamento de Imagem Assistida por Computador , Motivação , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Funções Verossimilhança
13.
medRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577714

RESUMO

The etiologic mechanisms of post-acute medical morbidities and unexplained symptoms (Long COVID) following SARS-CoV-2 infection are incompletely understood. There is growing evidence that viral persistence and immune dysregulation may play a major role. We performed whole-body positron emission tomography (PET) imaging in a cohort of 24 participants at time points ranging from 27 to 910 days following acute SARS-CoV-2 infection using a novel radiopharmaceutical agent, [18F]F-AraG, a highly selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the post-acute COVID group, which included those with and without Long COVID symptoms, was significantly higher compared to pre-pandemic controls in many anatomical regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. Although T cell activation tended to be higher in participants imaged closer to the time of the acute illness, tracer uptake was increased in participants imaged up to 2.5 years following SARS-CoV-2 infection. We observed that T cell activation in spinal cord and gut wall was associated with the presence of Long COVID symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms. Notably, increased T cell activation in these tissues was also observed in many individuals without Long COVID. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization SARS-CoV-2 RNA and immunohistochemical studies in a subset of participants with Long COVID symptoms. We identified cellular SARS-CoV-2 RNA in rectosigmoid lamina propria tissue in all these participants, ranging from 158 to 676 days following initial COVID-19 illness, suggesting that tissue viral persistence could be associated with long-term immunological perturbations.

14.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631700

RESUMO

This paper proposes an algorithm for transmitting and reconstructing the estimated point cloud by temporally estimating a dynamic point cloud sequence. When a non-rigid 3D point cloud sequence (PCS) is input, the sequence is divided into groups of point cloud frames (PCFs), and a key PCF is selected. The 3D skeleton is predicted through 3D pose estimation, and the motion of the skeleton is estimated by analyzing the joints and bones of the 3D skeleton. For the deformation of the non-rigid human PC, the 3D PC model is transformed into a mesh model, and the key PCF is rigged using the 3D skeleton. After deforming the key PCF into the target PCF utilizing the motion vector of the estimated skeleton, the residual PC between the motion compensation PCF and the target PCF is generated. If there is a key PCF, the motion vector of the target PCF, and a residual PC, the target PCF can be reconstructed. Just as compression is performed using pixel correlation between frames in a 2D video, this paper compresses 3D PCFs by estimating the non-rigid 3D motion of a 3D object in a 3D PC. The proposed algorithm can be regarded as an extension of the 2D motion estimation of a rigid local region in a 2D plane to the 3D motion estimation of a non-rigid object (human) in 3D space. Experimental results show that the proposed method can successfully compress 3D PC sequences. If it is used together with a PC compression technique such as MPEG PCC (point cloud compression) in the future, a system with high compression efficiency may be configured.

15.
IEEE Trans Radiat Plasma Med Sci ; 7(1): 75-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37635919

RESUMO

68Ga-DOTA-TATE and 177Lu-DOTA-TATE are radiolabeled somatostatin analogs used to detect or treat neuroendocrine tumors. They are administered separately for either diagnostic or therapeutic purposes but little experimental data for their biokinetics are measured simultaneously in the same biological model. By co-administering 68Ga-DOTA-TATE and 177Lu-DOTA-TATE in three laboratory mice bearing two IMR32 tumor xenografts expressing different levels of somatostatin receptors (SSTRs) on their shoulders and imaging both 68Ga and 177Lu simultaneously, we investigated the relationship between the uptake of 68Ga-DOTA-TATE and 177Lu-DOTA-TATE in organs and tumors. In addition, using the percent of injected activity (%IA) values of 68Ga-DOTA-TATE at 0 hr and 4 hr, we investigated the correlation between 68Ga-DOTA-TATE %IA and the time-integrated activity coefficients (TIACs) of 177Lu-DOTA-TATE to estimate the organ-based and tumor-based doses of 177Lu-DOTA-TATE. The results showed that the extrapolated clearance time of 68Ga-DOTA-TATE linearly correlated with the TIACs of 177Lu-DOTA-TATE in the IMR32-SSTR2 tumor, kidneys, brain, heart, liver, stomach and remainder body. The extrapolated %IA value at 0 hr of 68Ga-DOTA-TATE linearly correlated with the TIACs of 177Lu-DOTA-TATE in the IMR32 tumor and lungs. In our murine study, both kidneys and lungs were organs that showed high absorbed doses of 177Lu-DOTA-TATE.

16.
ACS Cent Sci ; 9(6): 1241-1251, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396859

RESUMO

Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly in vitro, on cancer cells, and on tumors in vivo. The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets.

17.
JACC Clin Electrophysiol ; 9(9): 2024-2033, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480874

RESUMO

Myocarditis is frequently associated with viral infections. Increasing evidence points to an association between myocarditis and inherited cardiomyopathies, though it is unclear whether myocarditis is a driver or an accessory. We present a primary vignette and case series highlighting recurrent myocarditis in patients later found to harbor pathogenic desmosomal variants and provide clinical and basic science context, exploring 2 potentially overlapping hypotheses: that stress induces cellular injury and death in structurally abnormal myocytes and that recurrent viral myocardial and truncated desomosomal protein byproducts as 2 hits could lead to loss of immune tolerance and subsequent autoreactivity.

18.
J Nucl Med ; 64(7): 1076-1082, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201957

RESUMO

225Ac-targeted α-radiotherapy is a promising approach to treating malignancies, including prostate cancer. However, α-emitting isotopes are difficult to image because of low administered activities and a low fraction of suitable γ-emissions. The in vivo generator 134Ce/134La has been proposed as a potential PET imaging surrogate for the therapeutic nuclides 225Ac and 227Th. In this report, we detail efficient radiolabeling methods using the 225Ac-chelators DOTA and MACROPA. These methods were applied to radiolabeling of prostate cancer imaging agents, including PSMA-617 and MACROPA-PEG4-YS5, for evaluation of their in vivo pharmacokinetic characteristics and comparison to the corresponding 225Ac analogs. Methods: Radiolabeling was performed by mixing DOTA/MACROPA chelates with 134Ce/134La in NH4OAc, pH 8.0, at room temperature, and radiochemical yields were monitored by radio-thin-layer chromatography. In vivo biodistributions of 134Ce-DOTA/MACROPA.NH2 complexes were assayed through dynamic small-animal PET/CT imaging and ex vivo biodistribution studies over 1 h in healthy C57BL/6 mice, compared with free 134CeCl3 In vivo, preclinical imaging of 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5 was performed on 22Rv1 tumor-bearing male nu/nu-mice. Ex vivo biodistribution was performed for 134Ce/225Ac-MACROPA-PEG4-YS5 conjugates. Results: 134Ce-MACROPA.NH2 demonstrated near-quantitative labeling with 1:1 ligand-to-metal ratios at room temperature, whereas a 10:1 ligand-to-metal ratio and elevated temperatures were required for DOTA. Rapid urinary excretion and low liver and bone uptake were seen for 134Ce/225Ac-DOTA/MACROPA. NH2 conjugates in comparison to free 134CeCl3 confirmed high in vivo stability. An interesting observation during the radiolabeling of tumor-targeting vectors PSMA-617 and MACROPA-PEG4-YS5-that the daughter 134La was expelled from the chelate after the decay of parent 134Ce-was confirmed through radio-thin-layer chromatography and reverse-phase high-performance liquid chromatography. Both conjugates, 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5, displayed tumor uptake in 22Rv1 tumor-bearing mice. The ex vivo biodistribution of 134Ce-MACROPA.NH2, 134Ce-DOTA and 134Ce-MACROPA-PEG4-YS5 corroborated well with the respective 225Ac-conjugates. Conclusion: These results demonstrate the PET imaging potential for 134Ce/134La-labeled small-molecule and antibody agents. The similar 225Ac and 134Ce/134La-chemical and pharmacokinetic characteristics suggest that the 134Ce/134La pair may act as a PET imaging surrogate for 225Ac-based radioligand therapies.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Medicina de Precisão , Ligantes , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral
19.
Front Med (Lausanne) ; 10: 1091463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089589

RESUMO

Aim: Neuroinflammation plays a key role in both the pathogenesis and the progression of cerebral cavernous malformations (CCM). Flutriciclamide ([18F]GE-180) is a translocator protein (TSPO) targeting positron emission tomography (PET) tracer, developed for imaging neuroinflammation. The objectives of this study were to describe characteristics of flutriciclamide uptake in different brain tissue regions in CCM patients compared to controls, and to evaluate flutriciclamide uptake and iron deposition within CCM lesions. Materials and methods: Five patients with CCM and six controls underwent a 60 or 90 min continuous PET/MRI scan following 315 ± 68.9 MBq flutriciclamide administration. Standardized uptake value (SUV) and standardized uptake value ratio (SUVr) were obtained using the striatum as a pseudo-reference. Quantitative susceptibility maps (QSM) were used to define the location of the vascular malformation and calculate the amount of iron deposition in each lesion. Results: Increased flutriciclamide uptake was observed in all CCM lesions. The temporal pole demonstrated the highest radiotracer uptake; the paracentral lobule, cuneus and hippocampus exhibited moderate uptake; while the striatum had the lowest uptake, with average SUVs of 0.66, 0.55, 0.63, 0.55, and 0.33 for patient with CCM and 0.57, 0.50, 0.48, 0.42, and 0.32 for controls, respectively. Regional SUVr showed similar trends. The average SUV and QSM values in CCM lesions were 0.58 ± 0.23 g/ml and 0.30 ± 0.10 ppm. SUVs and QSM were positively correlated in CCM lesions (r = 0.53, p = 0.03). Conclusion: The distribution of flutriciclamide ([18F]GE-180) in the human brain and CCM lesions demonstrated the potential of this TSPO PET tracer as a marker of neuroinflammation that may be relevant for characterizing CCM disease progression along with QSM.

20.
Cell Metab ; 35(3): 504-516.e5, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889284

RESUMO

Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells. Here, we describe how systemic hypoxia rewires fuel metabolism to optimize whole-body adaptation. Acclimatization to hypoxia coincided with dramatically lower blood glucose and adiposity. Using in vivo fuel uptake and flux measurements, we found that organs partitioned fuels differently during hypoxia adaption. Acutely, most organs increased glucose uptake and suppressed aerobic glucose oxidation, consistent with previous in vitro investigations. In contrast, brown adipose tissue and skeletal muscle became "glucose savers," suppressing glucose uptake by 3-5-fold. Interestingly, chronic hypoxia produced distinct patterns: the heart relied increasingly on glucose oxidation, and unexpectedly, the brain, kidney, and liver increased fatty acid uptake and oxidation. Hypoxia-induced metabolic plasticity carries therapeutic implications for chronic metabolic diseases and acute hypoxic injuries.


Assuntos
Glucose , Hipóxia , Humanos , Glucose/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Ácidos Graxos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA