Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hypertension ; 80(5): e75-e89, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951054

RESUMO

There is increasing interest in the long-term cardiovascular health of women with complicated pregnancies and their affected offspring. Emerging antenatal risk factors such as preeclampsia appear to increase the risk of hypertension and cardiovascular disease across the life course in both the offspring and women after pregnancy. However, the antenatal programming mechanisms responsible are complex and incompletely understood, with roots in alterations in the development, structure, and function of the kidney, heart, vasculature, and brain. The renin-angiotensin-aldosterone system is a major regulator of maternal-fetal health through the placental interface, as well as kidney and cardiovascular tissue development and function. Renin-angiotensin-aldosterone system dysregulation plays a critical role in the development of pregnancy complications such as preeclampsia and programming of long-term adverse cardiovascular health in both the mother and the offspring. An improved understanding of antenatal renin-angiotensin-aldosterone system programming is crucial to identify at-risk individuals and to facilitate development of novel therapies to prevent and treat disease across the life course. Given the inherent complexities of the renin-angiotensin-aldosterone system, it is imperative that preclinical and translational research studies adhere to best practices to accurately and rigorously measure components of the renin-angiotensin-aldosterone system. This comprehensive synthesis of preclinical and translational scientific evidence of the mechanistic role of the renin-angiotensin-aldosterone system in antenatal programming of hypertension and cardiovascular disease will help (1) to ensure that future research uses best research practices, (2) to identify pressing needs, and (3) to guide future investigations to maximize potential outcomes. This will facilitate more rapid and efficient translation to clinical care and improve health outcomes.


Assuntos
Doenças Cardiovasculares , Hipertensão , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Sistema Renina-Angiotensina/fisiologia , Doenças Cardiovasculares/complicações , American Heart Association , Placenta , Mães , Renina , Aldosterona
2.
Clin Sci (Lond) ; 137(1): 35-45, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36503993

RESUMO

Polycystic kidney disease (PKD) is an inherited disorder that results in large kidneys, numerous fluid-filled cysts, and ultimately end-stage kidney disease. PKD is either autosomal dominant caused by mutations in PKD1 or PKD2 genes or autosomal recessive caused by mutations in the PKHD1 or DZIP1L genes. While the genetic basis of PKD is known, the downstream molecular mechanisms and signaling pathways that lead to deregulation of proliferation, apoptosis, and differentiation are not completely understood. The Notch pathway plays critical roles during kidney development including directing differentiation of various progenitor cells, and aberrant Notch signaling results in gross alternations in cell fate. In the present study, we generated and studied transgenic mice that have overexpression of an intracellular fragment of mouse Notch1 ('NotchIC') in renin-expressing cells. Mice with overexpression of NotchIC in renin-expressing cells developed numerous fluid-filled cysts, enlarged kidneys, anemia, renal insufficiency, and early death. Cysts developed in both glomeruli and proximal tubules, had increased proliferation marks, and had increased levels of Myc. The present work implicates the Notch signaling pathway as a central player in PKD pathogenesis and suggests that the Notch-Myc axis may be an important target for therapeutic intervention.


Assuntos
Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Recessivo , Camundongos , Animais , Renina/genética , Transdução de Sinais , Fenótipo , Camundongos Transgênicos , Rim Policístico Autossômico Dominante/genética , Rim/patologia , Canais de Cátion TRPP/genética , Receptores de Superfície Celular/genética
3.
Dis Model Mech ; 11(12)2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30467111

RESUMO

Conditional deletion of RBP-J, the major transcriptional effector of Notch signaling, specifically within renin-expressing cells leads to the development of B-cell leukemia. However, the influence of contributing factors such as mouse strain, cell of origin and Cre recombinase copy number are unknown. In this study, we compared RBP-J deletion efficiency using one versus two copies of Cre recombinase. Further, we compared the incidence and timing of leukemia development in two unique strains of mice, C57BL/6 and 129/SV, as well as at different B-cell developmental stages. We found that animals expressing two copies of Cre recombinase developed B-cell leukemia at an earlier age and with more fulminant disease, compared with control animals and animals expressing one copy of Cre recombinase. In addition, we found a difference in leukemia incidence between C57BL/6 and 129/SV mouse strains. Whereas deletion of RBP-J in renin-expressing cells of C57BL/6 mice leads to the development of B-cell leukemia, 129/SV mice develop dermatitis with a reactive, myeloproliferative phenotype. The difference in phenotypes is explained, in part, by the differential expression of extra-renal renin; C57BL/6 mice have more renin-expressing cells within hematopoietic tissues. Finally, we found that deletion of RBP-J in Mb1- or CD19-expressing B lymphocytes does not result in leukemia development. Together, these studies establish that renin progenitors are vulnerable cells for neoplastic transformation and emphasize the importance of genetic background on the development of inflammatory and malignant conditions.This article has an associated First Person interview with the first author of the paper.


Assuntos
Carcinogênese/genética , Deleção de Genes , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Leucemia/genética , Animais , Linfócitos B/patologia , Linhagem da Célula , Transformação Celular Neoplásica/patologia , Dermatite/patologia , Dosagem de Genes , Hematopoese , Integrases/metabolismo , Leucemia/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Renina/metabolismo , Pele/patologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA