Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37204954

RESUMO

Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases, while its manual delineation is unduly burdensome. To alleviate this time-consuming and potentially subjective manual procedure, researchers have proposed methods to automatically segment airways from computerized tomography (CT) images. However, some small-sized airway branches (e.g., bronchus and terminal bronchioles) significantly aggravate the difficulty of automatic segmentation by machine learning models. In particular, the variance of voxel values and the severe data imbalance in airway branches make the computational module prone to discontinuous and false-negative predictions, especially for cohorts with different lung diseases. The attention mechanism has shown the capacity to segment complex structures, while fuzzy logic can reduce the uncertainty in feature representations. Therefore, the integration of deep attention networks and fuzzy theory, given by the fuzzy attention layer, should be an escalated solution for better generalization and robustness. This article presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network (FANN) and a comprehensive loss function to enhance the spatial continuity of airway segmentation. The deep fuzzy set is formulated by a set of voxels in the feature map and a learnable Gaussian membership function. Different from the existing attention mechanism, the proposed channel-specific fuzzy attention addresses the issue of heterogeneous features in different channels. Furthermore, a novel evaluation metric is proposed to assess both the continuity and completeness of airway structures. The efficiency, generalization, and robustness of the proposed method have been proved by training on normal lung disease while testing on datasets of lung cancer, COVID-19, and pulmonary fibrosis.

2.
Comput Biol Med ; 153: 106511, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608461

RESUMO

Electrocardiogram (ECG) is a widely used technique to diagnose cardiovascular diseases. It is a non-invasive technique that represents the cyclic contraction and relaxation of heart muscles. ECG can be used to detect abnormal heart motions, heart attacks, heart diseases, or enlarged hearts by measuring the heart's electrical activity. Over the past few years, various works have been done in the field of studying and analyzing the ECG signals to detect heart diseases. In this work, we propose a deep learning and fuzzy clustering (Fuzz-ClustNet) based approach for Arrhythmia detection from ECG signals. We started by denoising the collected ECG signals to remove errors like baseline drift, power line interference, motion noise, etc. The denoised ECG signals are then segmented to have an increased focus on the ECG signals. We then perform data augmentation on the segmented images to counter the effects of the class imbalance. The augmented images are then passed through a CNN feature extractor. The extracted features are then passed to a fuzzy clustering algorithm to classify the ECG signals for their respective cardio diseases. We ran intensive simulations on two benchmarked datasets and evaluated various performance metrics. The performance of our proposed algorithm was compared with several recently proposed algorithms for heart disease detection from ECG signals. The obtained results demonstrate the efficacy of our proposed approach as compared to other contemporary algorithms.


Assuntos
Infarto do Miocárdio , Processamento de Sinais Assistido por Computador , Humanos , Frequência Cardíaca , Redes Neurais de Computação , Eletrocardiografia , Arritmias Cardíacas/diagnóstico por imagem , Algoritmos
3.
IEEE J Biomed Health Inform ; 27(10): 5134-5142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35290192

RESUMO

Synthetic digital twins based on medical data accelerate the acquisition, labelling and decision making procedure in digital healthcare. A core part of digital healthcare twins is model-based data synthesis, which permits the generation of realistic medical signals without requiring to cope with the modelling complexity of anatomical and biochemical phenomena producing them in reality. Unfortunately, algorithms for cardiac data synthesis have been so far scarcely studied in the literature. An important imaging modality in the cardiac examination is three-directional CINE multi-slice myocardial velocity mapping (3Dir MVM), which provides a quantitative assessment of cardiac motion in three orthogonal directions of the left ventricle. The long acquisition time and complex acquisition produce make it more urgent to produce synthetic digital twins of this imaging modality. In this study, we propose a hybrid deep learning (HDL) network, especially for synthetic 3Dir MVM data. Our algorithm is featured by a hybrid UNet and a Generative Adversarial Network with a foreground-background generation scheme. The experimental results show that from temporally down-sampled magnitude CINE images (six times), our proposed algorithm can still successfully synthesise high temporal resolution 3Dir MVM CMR data (PSNR=42.32) with precise left ventricle segmentation (DICE=0.92). These performance scores indicate that our proposed HDL algorithm can be implemented in real-world digital twins for myocardial velocity mapping data simulation. To the best of our knowledge, this work is the first one investigating digital twins of the 3Dir MVM CMR, which has shown great potential for improving the efficiency of clinical studies via synthesised cardiac data.


Assuntos
Aprendizado Profundo , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Ventrículos do Coração , Velocidade do Fluxo Sanguíneo , Imageamento por Ressonância Magnética
4.
Artigo em Inglês | MEDLINE | ID: mdl-36441897

RESUMO

Vessel border detection in IVUS images is essential for coronary disease diagnosis. It helps to obtain the clinical indices on the inner vessel morphology to indicate the stenosis. However, the existing methods suffer the challenge of scale-dependent interference. Early methods usually rely on the hand-crafted features, thus not robust to this interference. The existing deep learning methods are also ineffective to solve this challenge, because these methods aggregate multi-scale features in the top-down way. This aggregation may bring in interference from the non-adjacent scale. Besides, they only combine the features in all scales, and thus may weaken their complementary information. We propose the scale mutualized perception to solve this challenge by considering the adjacent scales mutually to preserve their complementary information. First, the adjacent small scales contain certain semantics to locate different vessel tissues. Then, they can also perceive the global context to assist the representation of the local context in the adjacent large scale, and vice versa. It helps to distinguish the objects with similar local features. Second, the adjacent large scales provide detailed information to refine the vessel boundaries. The experiments show the effectiveness of our method in 153 IVUS sequences, and its superiority to ten state-of-the-art methods.

5.
Inf Fusion ; 82: 99-122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664012

RESUMO

Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.

6.
J Ambient Intell Humaniz Comput ; : 1-37, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35039755

RESUMO

Extremism has grown as a global problem for society in recent years, especially after the apparition of movements such as jihadism. This and other extremist groups have taken advantage of different approaches, such as the use of Social Media, to spread their ideology, promote their acts and recruit followers. The extremist discourse, therefore, is reflected on the language used by these groups. Natural language processing (NLP) provides a way of detecting this type of content, and several authors make use of it to describe and discriminate the discourse held by these groups, with the final objective of detecting and preventing its spread. Following this approach, this survey aims to review the contributions of NLP to the field of extremism research, providing the reader with a comprehensive picture of the state of the art of this research area. The content includes a first conceptualization of the term extremism, the elements that compose an extremist discourse and the differences with other terms. After that, a review description and comparison of the frequently used NLP techniques is presented, including how they were applied, the insights they provided, the most frequently used NLP software tools, descriptive and classification applications, and the availability of datasets and data sources for research. Finally, research questions are approached and answered with highlights from the review, while future trends, challenges and directions derived from these highlights are suggested towards stimulating further research in this exciting research area.

7.
IEEE Trans Neural Netw Learn Syst ; 32(2): 507-522, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32603291

RESUMO

Brain tumor is one of the most dangerous cancers in people of all ages, and its grade recognition is a challenging problem for radiologists in health monitoring and automated diagnosis. Recently, numerous methods based on deep learning have been presented in the literature for brain tumor classification (BTC) in order to assist radiologists for a better diagnostic analysis. In this overview, we present an in-depth review of the surveys published so far and recent deep learning-based methods for BTC. Our survey covers the main steps of deep learning-based BTC methods, including preprocessing, features extraction, and classification, along with their achievements and limitations. We also investigate the state-of-the-art convolutional neural network models for BTC by performing extensive experiments using transfer learning with and without data augmentation. Furthermore, this overview describes available benchmark data sets used for the evaluation of BTC. Finally, this survey does not only look into the past literature on the topic but also steps on it to delve into the future of this area and enumerates some research directions that should be followed in the future, especially for personalized and smart healthcare.


Assuntos
Neoplasias Encefálicas/classificação , Aprendizado Profundo , Atenção à Saúde , Inteligência Artificial , Benchmarking , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Estudos Prospectivos , Radiologistas , Inquéritos e Questionários , Tomografia Computadorizada por Raios X , Transferência de Experiência
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1504-1508, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946179

RESUMO

Rhythm annotation of out-of-hospital cardiac episodes (OHCA) is key for a better understanding of the interplay between resuscitation therapy and OHCA patient outcome. OHCA rhythms are classified in five categories, asystole (AS), pulseless electrical activity (PEA), pulsed rhythms (PR), ventricular fibrillation (VF) and ventricular tachycardia (VT). Manual OHCA annotation by expert clinicians is onerous and time consuming, so there is a need for accurate and automatic OHCA rhythm annotation methods. For this study 852 OHCA episodes of patients treated with Automated External Defibrillators (AED) by the Emergency Medical Services of the Basque Country were analyzed. Six expert clinicians reviewed the electrocardiogram (ECG) of 4214 AED rhythm analyses and annotated the rhythm. Their consensus decision was used as ground truth. There were a total of 2418 AS, 294 PR, 1008 PEA, 472 VF and 22 VT. The ECG analysis intervals were extracted and used to develop an automatic rhythm annotator. Data was partitioned patient-wise into training (70%) and test (30%). Performance was evaluated in terms of per class sensitivity (Se) and F-score (F1). The unweighted mean of sensitivity (UMS) and F-score were used as global performance metrics. The classification method is composed of a feature extraction and denoising stage based on the stationary wavelet transform of the ECG, and on a random forest classifier. The best model presented a per rhythm Se/F1 of 95.8/95.7, 43.3/52.2, 85.3/81.3, 94.2/96.1, 81.9/72.2 for AS, PR, PEA, VF and VT, respectively. The UMS for the test set was 80.2%, 2-points above that of previous solutions. This method could be used to retrospectively annotate large OHCA datasets and ameliorate the workload of manual OHCA rhythm annotation.


Assuntos
Reanimação Cardiopulmonar , Árvores de Decisões , Serviços Médicos de Emergência , Parada Cardíaca , Parada Cardíaca Extra-Hospitalar , Taquicardia Ventricular , Eletrocardiografia , Humanos , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Estudos Retrospectivos , Fibrilação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA