Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Autophagy ; 17(6): 1448-1457, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559122

RESUMO

Macroautophagy/autophagy functions to degrade cellular components and intracellular pathogens. Autophagy receptors, including SQSTM1/p62, target intracellular pathogens. Staphylococcus aureus is a significant pathogen of humans, especially in immunocompromise. S. aureus may use neutrophils as a proliferative niche, but their intracellular fate following phagocytosis has not been analyzed in vivo. In vitro, SQSTM1 can colocalize with intracellular Staphylococcus aureus, but whether SQSTM1 is beneficial or detrimental in host defense against S. aureus in vivo is unknown. Here we determine the fate and location of S. aureus within neutrophils throughout zebrafish infection. We show Lc3 and Sqstm1 recruitment to phagocytosed S. aureus is altered depending on the bacterial location within the neutrophil and that Lc3 marking of bacterial phagosomes within neutrophils may precede bacterial degradation. Finally, we show Sqstm1 is important for controlling cytosolic bacteria, demonstrating for the first time a key role of Sqstm1 in autophagic control of S. aureus in neutrophils.Abbreviations: AR: autophagy receptor; CFU: colony-forming unit; CHT: caudal hematopoietic tissue; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; LWT: london wild-type: lyz: lysozyme; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification; UBD: ubiquitin binding domain.


Assuntos
Autofagia/fisiologia , Neutrófilos/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Staphylococcus aureus , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Autophagy ; 17(4): 888-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174246

RESUMO

Staphylococcus aureus is a major human pathogen causing multiple pathologies, from cutaneous lesions to life-threatening sepsis. Although neutrophils contribute to immunity against S. aureus, multiple lines of evidence suggest that these phagocytes can provide an intracellular niche for staphylococcal dissemination. However, the mechanism of neutrophil subversion by intracellular S. aureus remains unknown. Targeting of intracellular pathogens by macroautophagy/autophagy is recognized as an important component of host innate immunity, but whether autophagy is beneficial or detrimental to S. aureus-infected hosts remains controversial. Here, using larval zebrafish, we showed that the autophagy marker Lc3 rapidly decorates S. aureus following engulfment by macrophages and neutrophils. Upon phagocytosis by neutrophils, Lc3-positive, non-acidified spacious phagosomes are formed. This response is dependent on phagocyte NADPH oxidase as both cyba/p22phox knockdown and diphenyleneiodonium (DPI) treatment inhibited Lc3 decoration of phagosomes. Importantly, NADPH oxidase inhibition diverted neutrophil S. aureus processing into tight acidified vesicles, which resulted in increased host resistance to the infection. Some intracellular bacteria within neutrophils were also tagged by Sqstm1/p62-GFP fusion protein and loss of Sqstm1 impaired host defense. Together, we have shown that intracellular handling of S. aureus by neutrophils is best explained by Lc3-associated phagocytosis (LAP), which appears to provide an intracellular niche for bacterial pathogenesis, while the selective autophagy receptor Sqstm1 is host-protective. The antagonistic roles of LAP and Sqstm1-mediated pathways in S. aureus-infected neutrophils may explain the conflicting reports relating to anti-staphylococcal autophagy and provide new insights for therapeutic strategies against antimicrobial-resistant Staphylococci.Abbreviations: ATG: autophagy related; CFU: colony-forming units; CMV: cytomegalovirus; Cyba/P22phox: cytochrome b-245, alpha polypeptide; DMSO: dimethyl sulfoxide; DPI: diphenyleneiodonium; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; Irf8: interferon regulatory factor 8; LAP: LC3-associated phagocytosis; lyz: lysozyme; LWT: london wild type; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; RFP: red fluorescent protein; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification.


Assuntos
Autofagia , Espaço Intracelular/microbiologia , Neutrófilos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Animais Geneticamente Modificados , Cinética , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagocitose , Fagossomos/metabolismo , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA