Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11944-11956, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404036

RESUMO

A novel inhibitor-loaded bilayer hybrid system based on the LDH inner layer and MOF outer layer is designed on an aluminum alloy 2A12 surface to improve corrosion performance. The hybrid film system covers the inherent cavities and intercrystalline defects of the LDH film using the affinity between the LDH and the MOF compounds. The results demonstrate that the LDH-inhI precursor film is entirely covered by new Zn-based MOF microrods. The LDH-inhI precursor film is partially dissolved and recrystallized in favor of MOF crystal growth to strengthen the binding adhesion between LDH and MOF films. The LDH-inhI/MOF-inhII bilayer film shows significantly enhanced corrosion resistance through the synergistic action of LDH and MOF nanocontainers doped with different corrosion inhibitors (vanadates, 2,5-furandicarboxylic acid, and benzotriazoles). Due to the multiple loadings of the MOF film and the sustained-release of the LDH film, this method provides an effective approach to developing new anticorrosion systems and enhancing both the barrier ability and active corrosion protection performance of LDH-based conversion treatments.

2.
ACS Appl Mater Interfaces ; 15(4): 6098-6112, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689631

RESUMO

This work first describes the intercalation of corrosion inhibitors into layered double hydroxides LDH-OH/CO3 nanocontainers (parental LDH) obtained in situ on the surface of magnesium alloy AZ91 in the presence of a chelating agent. Vanadate, as a typical broad inhibitor for active metals, and oxalate, as an inhibitor suitable for magnesium, were selected as a first approach. The optimization of exchange conditions was performed, and the optimal parameters (ambient pressure and 95 °C) were selected. The corrosion protective properties of obtained LDH-based layers were studied using immersion and salt spray tests in NaCl solution, supported by electrochemical impedance spectroscopy and atomic emission spectroelectrochemistry. It is demonstrated that vanadate intercalated into LDH is more effective for the active protection of AZ91 in comparison to the performance of oxalate. A possible mechanism of corrosion inhibition based on the application of LDH nanocontainers is suggested and discussed.

3.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143626

RESUMO

In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques-namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained. A more compact PEO coating was found on the Al substrate, with a lower porosity compared to Mg substrates under the same processing parameters. Furthermore, huge pore clusters were detected with microCT. Overall, 2D surface porosity calculations did not show sufficient accuracy for them to become the recommended method for the exact evaluation of the porosity of PEO coatings; microCT is a more appropriate method for porosity evaluation compared to SEM imaging. Moreover, the advantage of 3D microCT images clearly lies in the detection of closed and open porosity, which are important for coating properties.

4.
ACS Omega ; 7(14): 12412-12423, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449924

RESUMO

Effective protective coatings are an essential component of lightweight engineering materials in a large variety of applications as they ensure structural integrity of the base material throughout its whole service life. Layered double hydroxides (LDHs) loaded with corrosion inhibitors depict a promising approach to realize an active corrosion protection for aluminum and magnesium. In this work, we employed a combination of density functional theory and molecular dynamics simulations to gain a deeper understanding of the influence of intercalated water content on the structure, the stability, and the anion-exchange capacity of four different LDH systems containing either nitrate, carbonate, or oxalate as potential corrosion inhibiting agents or chloride as a corrosion initiator. To quantify the structural change, we studied the atom density distribution, radial distribution function, and orientation of the intercalated anions. Additionally, we determined the stability of the LDH systems by calculating their respective hydration energies, hydrogen-bonded network connected to the intercalated water molecules, as well as the self-diffusion coefficients of the intercalated anions to provide an estimate for the probability of their release after intercalation. The obtained computational results suggest that the hydration state of LDHs has a significant effect on their key properties like interlayer spacing and self-diffusion coefficients of the intercalated anions. Furthermore, we conclude from our simulation results that a high self-diffusion coefficient which is linked to the mobility of the intercalated anions is vital for its release via an anion-exchange mechanism and to subsequently mitigate corrosion reactions. Furthermore, the presented theoretical study provides a robust force field for the computer-assisted design of further LDH-based active anticorrosion coatings.

5.
ACS Appl Mater Interfaces ; 13(43): 51685-51694, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670367

RESUMO

A promising double-ligand strategy for the delivery of active corrosion inhibitors by a Zn(II)-based metal-organic framework (Zn-MOF) is developed. Zn-MOF compounds were synthesized by a facile one-pot solvothermal method and characterized. The Zn-MOF is based on the corrosion inhibitor benzotriazole (BTA) and 2,5-furandicarboxylic acid (H2FDA) ligand, which is a promising renewable building block alternative to terephthalic or isophthalic acid. The crystal structure and morphology are characterized by single-crystal X-ray diffraction analysis, powder X-ray diffraction analysis (PXRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The synthesized MOF crystallites are in the trigonal space group R3c with the cell parameters in a three-dimensional (3D) anionic framework. Their ability to inhibit the corrosion process of aluminum alloy 2A12 in NaCl solution was also evaluated by immersion tests in solutions with and without a MOF. The postcorrosion analysis was performed by SEM and X-ray photoelectron spectroscopy (XPS). Additional information about the inhibition efficiency was obtained by electrochemical impedance spectroscopy (EIS). The results suggest that the as-synthesized MOF can release the inhibitors and form protective layers effectively on the surface of the aluminum alloy. The use of inhibitor-loaded MOF nanocontainers provides promising opportunities for the smart delivery of inhibitors and effective corrosion protection of 2A12 aluminum alloys.

6.
Phys Chem Chem Phys ; 22(31): 17574-17586, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716424

RESUMO

Kinetic parameters for three anion exchange reactions - Zn-LDH-NO3→ Zn-LDH-Cl, Zn-LDH-NO3→ Zn-LDH-SO4 and Zn-LDH-NO3→ Zn-LDH-VOx- were obtained by in situ synchrotron study. The first and the second ones are two-stage reactions; the first stage is characterized by the two-dimensional diffusion-controlled reaction following deceleratory nucleation and the second stage is a one-dimensional diffusion-controlled reaction also with a decelerator nucleation effect. In the case of exchange NO3-→ Cl- host anions are completely released, while in the case of NO3-→ SO42- the reaction ends without complete release of nitrate anions. The exchange of Zn-LDH-NO3→ Zn-LDH-VOx is a one-stage reaction and goes much slower than the previous two cases. The latter is characterized by a one stage two-dimensional reaction with an instantaneous nucleation. As a result, at the end of this process there are two crystalline phases with different polyvanadate species, presumably V4O124- and V2O74-, nitrate anions were not completely released. The rate of replacing NO3- anions by guest ones can be represented as Cl- > SO42- > VOxy-.

7.
Nanomaterials (Basel) ; 10(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422891

RESUMO

In this work we demonstrate the role of grain boundaries and domain walls in the local transport properties of n- and p-doped bismuth ferrites, including the influence of these singularities on the space charge imbalance of the energy band structure. This is mainly due to the charge accumulation at domain walls, which is recognized as the main mechanism responsible for the electrical conductivity in polar thin films and single crystals, while there is an obvious gap in the understanding of the precise mechanism of conductivity in ferroelectric ceramics. The conductivity of the Bi0.95Ca0.05Fe1-xTixO3-δ (x = 0, 0.05, 0.1; δ = (0.05 - x)/2) samples was studied using a scanning probe microscopy approach at the nanoscale level as a function of bias voltage and chemical composition. The obtained results reveal a distinct correlation between electrical properties and the type of charged defects when the anion-deficient (x = 0) compound exhibits a three order of magnitude increase in conductivity as compared with the charge-balanced (x = 0.05) and cation-deficient (x = 0.1) samples, which is well described within the band diagram representation. The data provide an approach to control the transport properties of multiferroic bismuth ferrites through aliovalent chemical substitution.

8.
Materials (Basel) ; 13(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290150

RESUMO

Nanocrystalline La0.9A0.1MnO3 (where A is Li, Na, K) powders were synthesized by a combustion method. The powders used to prepare nanoceramics were fabricated via a high-temperature sintering method. The structure and morphology of all compounds were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the size of the crystallites depended on the type of alkali ions used. The high-pressure sintering method kept the nanosized character of the grains in the ceramics, which had a significant impact on their physical properties. Magnetization studies were performed for both powder and ceramic samples in order to check the impact of the alkali ion dopants as well as the sintering pressure on the magnetization of the compounds. It was found that, by using different dopants, it was possible to strongly change the magnetic characteristics of the manganites.

9.
Materials (Basel) ; 11(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513610

RESUMO

In the frame of the current work, it was shown that plasma electrolytic oxidation (PEO) treatment can be applied on top of phosphoric sulfuric acid (PSA) anodized aluminum alloy AA2024. Being hard and well-adherent to the substrate, PEO layers improve both corrosion and wear resistance of the material. To facilitate PEO formation and achieve a dense layer, the systematic analysis of PEO layer formation on the preliminary PSA anodized layer was performed in this work. The microstructure, morphology, and composition of formed PEO coatings were investigated using scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical emission spectroscopy (GDOES). It was shown that under constant current treatment conditions, the PSA layer survived under the applied voltage of 350 V, whilst 400 V was an intermediate stage; and under 450 V, the PSA layer was fully converted after 5 min of the treatment. The comparison test with PEO formation on the bare material was performed. It was confirmed that during the "sparking" mode (400 V) of PEO formation, the PEO coatings, formed on PSA treated AA2024, were more wear resistant than the same PEO coatings on bare AA2024.

10.
Phys Chem Chem Phys ; 16(45): 25152-60, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25331374

RESUMO

The photochemical degradation of 2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) inhibitors was studied in the present work in aqueous and in organic solutions. The extent of photodegradation was assessed by UV-Vis spectroscopy and the main reaction products were identified by tandem electrospray ionization mass spectrometry (ESI-MS/MS). The analysis of degradation products upon UV irradiation revealed the predominant formation of dimeric compounds from MBT and oligomeric structures from BTA, which were further converted into aniline. The increase of the quantum yield of MBT and BTA photodegradation reactions under aerobic conditions both in aqueous and organic solvents was explained by an increase of the spin-orbit conversion of the singlet radical pairs into the triplet radical pairs in the presence of oxygen. These triplet pairs further dissociate into free radicals, or convert to the parent compounds. At the early stage of UV irradiation, free radical coupling leads essentially to dimer formation in the case of MBT and to the formation of oligomers in the case of BTA irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA