Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(7): 3543-3551, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29186575

RESUMO

The ordered structure of UV chromophores in DNA resembles photosynthetic light-harvesting complexes in which quantum coherence effects play a major role in highly efficient directional energy transfer. The possible role of coherent excitons in energy transport in DNA remains debated. Meanwhile, energy transport properties are greatly important for understanding the mechanisms of photochemical reactions in cellular DNA and for DNA-based artificial nanostructures. Here, we studied energy transfer in DNA complexes formed with silver nanoclusters and with intercalating dye (acridine orange). Steady-state fluorescence measurements with two DNA templates (15-mer DNA duplex and calf thymus DNA) showed that excitation energy can be transferred to the clusters from 21 and 28 nucleobases, respectively. This differed from the DNA-acridine orange complex for which energy transfer took place from four neighboring bases only. Fluorescence up-conversion measurements showed that the energy transfer took place within 100 fs. The efficient energy transport in the Ag-DNA complexes suggests an excitonic mechanism for the transfer, such that the excitation is delocalized over at least four and seven stacked bases, respectively, in one strand of the duplexes stabilizing the clusters. This result demonstrates that the exciton delocalization length in some DNA structures may not be limited to just two bases.


Assuntos
DNA/química , Transferência de Energia/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , Laranja de Acridina/química , Animais , Bovinos , DNA/genética , DNA/efeitos da radiação , Fluorescência , Nanoestruturas/química , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Teoria Quântica , Prata/química , Raios Ultravioleta
2.
Bioconjug Chem ; 27(1): 143-50, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26625011

RESUMO

Two new supramolecular organometallic complexes, namely, [Au6Cu2(C2C6H4CHO)6(PPh2C6H4PPh2)3](PF6)2 and [Au6Cu2(C2C6H4NCS)6(PPh2C6H4PPh2)3](PF6)2, with highly reactive aldehyde and isothiocyanate groups have been synthesized and characterized using X-ray crystallography, ESI mass spectrometry, and NMR spectroscopy. The compounds obtained demonstrated bright emission in solution with the excited-state lifetime in microsecond domain both under single- and two-photon excitation. The luminescent complexes were found to be suitable for bioconjugation in aqueous media. In particular, they are able to form the covalent conjugates with proteins of different molecular size (soybean trypsin inhibitor, human serum albumin, rabbit anti-HSA antibodies). The conjugates demonstrated a high level of the phosphorescent emission from the covalently bound label, excellent solubility, and high stability in physiological media. The highest quantum yield, storage stability, and luminance were detected for bioconjugates formed by covalent attachment of the aldehyde-bearing supramolecular Au(I)-Cu(I) complex. The measured biological activity of one of the labeled model proteins clearly showed that introduced label did not prevent the biorecognition and specific protein-protein complex formation that was extremely important for the application of the conjugates in biomolecular detection and imaging.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Ouro/química , Substâncias Luminescentes/química , Animais , Anticorpos/química , Anticorpos/metabolismo , Complexos de Coordenação/química , Cristalografia por Raios X , Humanos , Isotiocianatos/química , Substâncias Luminescentes/metabolismo , Espectroscopia de Ressonância Magnética , Coelhos , Albumina Sérica/química , Albumina Sérica/imunologia , Albumina Sérica/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Inibidor da Tripsina de Soja de Kunitz/química , Inibidor da Tripsina de Soja de Kunitz/metabolismo
3.
J Inorg Biochem ; 149: 108-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25864999

RESUMO

Two-photon microscopy reveals several advantages over conventional one since it provides higher spatial resolution as well as deeper penetration into the sample under study. The development of suitable two-photon probes is one of the most challenging tasks in this area. Here we present phosphorescent non-covalent adduct of human serum albumin and Au-Ag alkynyl-diphosphine complex, [Au14Ag4(C2Ph)12(PPh2C6H4PPh2)6][PF6]4, which exhibits high cross section of two-photon-induced luminescence (δTPE) within large near-infrared excitation wavelength region (700-800 nm) with maximum δTPE about 38 GM at 740 nm. This feature makes it a promising probe for multiphoton bioimaging as demonstrated by successful visualization of glioma C6 cells and various tissues by two-photon confocal microscopy both in planar and z-stacking modes. Additionally, the broad excitation region enables optimization of the signal-to-background auto-fluorescence ratio via variation of excitation wavelength.


Assuntos
Albuminas/química , Substâncias Luminescentes/síntese química , Compostos Organoáuricos/síntese química , Linhagem Celular Tumoral , Ouro/química , Humanos , Substâncias Luminescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos Organoáuricos/química , Prata/química
4.
Dalton Trans ; 39(10): 2676-83, 2010 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-20179863

RESUMO

Reaction of the polymeric alkynyl complexes (AuC(2)C(6)H(4)R)(n) (R = 4-NH(2) and 3-NH(2)) with the diphosphine PPh(2)C(6)H(4)PPh(2) in the presence of Cu(+) ions gave two novel heterometallic aggregates [{Au(3)Cu(2)(C(2)C(6)H(4)R)(6)}Au(3)(PPh(2)C(6)H(4)PPh(2))(3)](PF(6))(2) (R = 4-NH(2) (2), 3-NH(2) (3)). The compounds obtained were characterized by NMR spectroscopy and ESI-MS measurements. The solid-state structure of their 4-NMe(2) congener 1 is reported. The complexes 1-3 reversibly react with strong (HSO(3)Me and HSO(3)CF(3)) acids to give the adducts [{Au(3)Cu(2)(C(2)C(6)H(4)-R)(6)*(R'SO(3)H)(6)}Au(3)(PPh(2)C(6)H(4)PPh(2))(3)](PF(6))(2) (R = 4-NMe(2) (4), 4-NH(2) (5), 3-NH(2) (6)) with six acid molecules bound to the amine groups of the alkynyl ligands. Composition and structure of the adducts were established using ESI-MS and multinuclear ((31)P, (1)H and (1)H-(1)H COSY) NMR spectroscopy. It was found that formation of these adducts results in crucial changes of luminescence characteristics of the complexes 1-3 to give substantial (ca. 100 nm) blue shift of the emission maxima and a sharp increase (about an order of magnitude) in luminescence quantum yield for 4-NR(2) substituted derivatives. In the case of 3-substituted complex 3 the effect of adduct formation is much less pronounced and leads to blue-shift of emission maximum for 30 nm accompanied with a small drop in emission quantum yield. Computational studies have been performed to provide additional insight into the structural, electronic and photophysical properties of the starting complexes and their acid adducts. Interpretation of the photophysical effects induced by the adduct formation was suggested.

5.
Inorg Chem ; 47(20): 9478-88, 2008 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-18800832

RESUMO

The reactions between diphosphino-alkynyl gold complexes (PhC2Au)PPh2(C6H4)(n)PPh2(AuC2Ph) (n = 1, 2, 3) with Cu(+) lead to formation of the heterometallic aggregates, the composition of which may be described by a general formula [{Au(x)Cu(y)(C2Ph)2x}Au3{PPh2(C6H4)(n)PPh2}3](3+(y-x)) (n = 1, 2, 3; x = (n + 1)(n + 2)/2; y = n(n + 1)). These compounds display very similar structural patterns and consist of the [Au(x)Cu(y)(C2Ph)2x](y-x) alkynyl clusters "wrapped" in the [Au3(diphosphine)3](3+) triangles. The complex for n = 1 was characterized crystallographically and spectrally, the larger ones (n = 2, 3) were investigated in detail by NMR spectroscopy. Their luminescence behavior has been studied, and a remarkably efficient emission with a maximum quantum yield of 0.92 (n = 1) has been detected. Photophysical experiments demonstrate that an increase of the size of the aggregates leads to a decrease in photostability and photoefficiency. Computational studies have been performed to provide additional insight into the structural and electronic properties of these supramolecular complexes. The theoretical results obtained are in good agreement with the experimental data, supporting the proposed structural motif. These studies also suggest that the observed efficient long-wavelength luminescence originates from metal-centered transitions within the heterometallic Au-Cu core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA