Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ISME J ; 17(4): 561-569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697964

RESUMO

Cable bacteria of the Desulfobulbaceae family are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera: Candidatus Electronema, typically found in freshwater environments, and Candidatus Electrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of the currently available MAGs are highly fragmented, incomplete, and thus likely miss key genes essential for deciphering the physiology of cable bacteria. Also, a closed, circular genome of cable bacteria has not been published yet. To address this, we performed Nanopore long-read and Illumina short-read shotgun sequencing of selected environmental samples and a single-strain enrichment of Ca. Electronema aureum. We recovered multiple cable bacteria MAGs, including two circular and one single-contig. Phylogenomic analysis, also confirmed by 16S rRNA gene-based phylogeny, classified one circular MAG and the single-contig MAG as novel species of cable bacteria, which we propose to name Ca. Electronema halotolerans and Ca. Electrothrix laxa, respectively. The Ca. Electronema halotolerans, despite belonging to the previously recognized freshwater genus of cable bacteria, was retrieved from brackish-water sediment. Metabolic predictions showed several adaptations to a high salinity environment, similar to the "saltwater" Ca. Electrothrix species, indicating how Ca. Electronema halotolerans may be the evolutionary link between marine and freshwater cable bacteria lineages.


Assuntos
Bactérias , Sedimentos Geológicos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sedimentos Geológicos/microbiologia , Transporte de Elétrons , Bactérias/genética , Bactérias/metabolismo , Filogenia , Água Doce/microbiologia
2.
Bioinformatics ; 38(19): 4481-4487, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35972375

RESUMO

MOTIVATION: Despite recent advancements in sequencing technologies and assembly methods, obtaining high-quality microbial genomes from metagenomic samples is still not a trivial task. Current metagenomic binners do not take full advantage of assembly graphs and are not optimized for long-read assemblies. Deep graph learning algorithms have been proposed in other fields to deal with complex graph data structures. The graph structure generated during the assembly process could be integrated with contig features to obtain better bins with deep learning. RESULTS: We propose GraphMB, which uses graph neural networks to incorporate the assembly graph into the binning process. We test GraphMB on long-read datasets of different complexities, and compare the performance with other binners in terms of the number of High Quality (HQ) genome bins obtained. With our approach, we were able to obtain unique bins on all real datasets, and obtain more bins on most datasets. In particular, we obtained on average 17.5% more HQ bins when compared with state-of-the-art binners and 13.7% when aggregating the results of our binner with the others. These results indicate that a deep learning model can integrate contig-specific and graph-structure information to improve metagenomic binning. AVAILABILITY AND IMPLEMENTATION: GraphMB is available from https://github.com/MicrobialDarkMatter/GraphMB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenoma , Metagenômica , Análise de Sequência de DNA/métodos , Metagenômica/métodos , Genoma Microbiano , Algoritmos
3.
Nat Methods ; 19(7): 823-826, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789207

RESUMO

Long-read Oxford Nanopore sequencing has democratized microbial genome sequencing and enables the recovery of highly contiguous microbial genomes from isolates or metagenomes. However, to obtain near-finished genomes it has been necessary to include short-read polishing to correct insertions and deletions derived from homopolymer regions. Here, we show that Oxford Nanopore R10.4 can be used to generate near-finished microbial genomes from isolates or metagenomes without short-read or reference polishing.


Assuntos
Metagenoma , Nanoporos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
4.
Genome Med ; 14(1): 47, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505393

RESUMO

BACKGROUND: In early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark. METHODS: We analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark. RESULTS: In a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period. CONCLUSIONS: Our findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Dinamarca/epidemiologia , Humanos , Filogenia , SARS-CoV-2/genética
5.
J Cancer ; 9(23): 4496-4502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519355

RESUMO

Glial fibrillary acidic protein (GFAP) is an intermediate filament that provides mechanical support to astrocytes. Rs2070935 is a single nucleotide polymorphism (SNP) located in the promoter region of the GFAP gene. The aim of this pilot study is to investigate GFAP expression at mRNA, protein levels and rs2070935 polymorphism in 50 different grade human astrocytoma samples. GFAP expression at mRNA level was measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) with SYBR Green dye, whereas the translational activity of the following gene was detected using western blot assay. Furthermore, genotypes of rs2070935 were identified using qPCR with TaqMan probes. As a result, GFAP mRNA and protein expression was found to be declining with increasing astrocytoma grade (p < 0.05). A tendency was observed between increased GFAP mRNA expression and shorter grade IV astrocytoma patient survival (p = 0.2117). The rs2070935 CC genotype was found to be associated with increased GFAP translational activity in grade II astrocytoma (p = 0.0238). Possible links between rs2070935 genotypes and alternative splicing of GFAP were also observed. The rs2070935 AA genotype was found to be associated with poor clinical outcome for grade IV astrocytoma patients (p = 0.0007), although the following data should be checked in a larger sample size of astrocytoma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA