Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuron ; 100(6): 1354-1368.e5, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449657

RESUMO

Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.


Assuntos
Agenesia do Corpo Caloso/genética , Cerebelo/anormalidades , Regulação da Expressão Gênica no Desenvolvimento/genética , Malformações do Desenvolvimento Cortical/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Malformações do Sistema Nervoso/genética , Agenesia do Corpo Caloso/complicações , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/patologia , Animais , Animais Recém-Nascidos , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Cerebelo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas do Tecido Nervoso/metabolismo , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/diagnóstico por imagem , Fator de Transcrição PAX6/metabolismo
2.
Cell Rep ; 24(4): 1013-1024, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044969

RESUMO

Cerebellar granule neurons (CGNs) undergo programmed cell death during the first postnatal week of mouse development, coincident with sustained expression of the death receptor p75NTR. Although ablation of p75NTR does not affect CGN cell death, deletion of the downstream effector RIP2 significantly increases CGN apoptosis, resulting in reduced adult CGN number and impaired behaviors associated with cerebellar function. Remarkably, CGN death is restored to basal levels when p75NTR is deleted in RIP2-deficient mice. We find that RIP2 gates the signaling output of p75NTR by competing with TRAF6 for binding to the receptor intracellular domain. In CGNs lacking RIP2, more TRAF6 is associated with p75NTR, leading to increased JNK-dependent apoptosis. In agreement with this, pharmacological inhibition or genetic ablation of TRAF6 restores cell death levels in CGNs lacking RIP2. These results reveal an unexpected mechanism controlling CGN number and highlight how competitive interactions govern the logic of death receptor function.


Assuntos
Cerebelo/metabolismo , Neurônios/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Sobrevivência Celular , Cerebelo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Transfecção
3.
Cell Rep ; 19(10): 1977-1986, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591570

RESUMO

The role of neurotrophic factors as endogenous survival proteins for brain neurons remains contentious. In the cerebellum, the signals controlling survival of molecular layer interneurons (MLIs) are unknown, and direct evidence for the requirement of a full complement of MLIs for normal cerebellar function and motor learning has been lacking. Here, we show that Purkinje cells (PCs), the target of MLIs, express the neurotrophic factor GDNF during MLI development and survival of MLIs depends on GDNF receptors GFRα1 and RET. Conditional mutant mice lacking either receptor lose a quarter of their MLIs, resulting in compromised synaptic inhibition of PCs, increased PC firing frequency, and abnormal acquisition of eyeblink conditioning and vestibulo-ocular reflex performance, but not overall motor activity or coordination. These results identify an endogenous survival mechanism for MLIs and reveal the unexpected vulnerability and selective requirement of MLIs in the control of cerebellar-dependent motor learning.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células de Purkinje/metabolismo , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-ret/genética , Células de Purkinje/citologia
4.
Cell Rep ; 18(2): 367-379, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076782

RESUMO

During embryonic development of the cerebellum, Purkinje cells (PCs) migrate away from the ventricular zone to form the PC plate. The mechanisms that regulate PC migration are incompletely understood. Here, we report that the neurotrophic receptor GFRα1 is transiently expressed in developing PCs and loss of GFRα1 delays PC migration. Neither GDNF nor RET, the canonical GFRα1 ligand and co-receptor, respectively, contribute to this process. Instead, we found that the neural cell adhesion molecule NCAM is co-expressed and directly interacts with GFRα1 in embryonic PCs. Genetic reduction of NCAM expression enhances wild-type PC migration and restores migration in Gfra1 mutants, indicating that NCAM restricts PC migration in the embryonic cerebellum. In vitro experiments indicated that GFRα1 can function both in cis and trans to counteract NCAM and promote PC migration. Collectively, our studies show that GFRα1 contributes to PC migration by limiting NCAM function.


Assuntos
Movimento Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Animais , Cerebelo/citologia , Embrião de Mamíferos/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
Mol Cell Neurosci ; 44(1): 15-29, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20153830

RESUMO

During nervous system development, neural progenitors arise in proliferative zones, then exit the cell cycle and differentiate as they migrate away from these zones. The neuronal protein BM88/Cend1 has been implicated in coordination of cell cycle exit and differentiation of neuronal precursors. To further elucidate its function we generated Cend1 knock-out mice and analyzed their phenotype during postnatal cerebellar development. Cend1(-/-) mice showed no overt abnormalities in the gross anatomy of the cerebellum or other brain regions. However, detailed analysis revealed alterations in cerebellar layering arising from increased proliferation of granule cell precursors, delayed radial granule cell migration and impaired Purkinje cell differentiation. Accordingly, expression of Patched1, cyclin D1, reelin and brain-derived neurotrophic factor, which correlate with morphological development of the cerebellum, was altered in Cend1(-/-) mice. The observed anatomical and molecular alterations were accompanied by deficits in motor behaviour. Our results suggest that Cend1 is required for normal cerebellar development.


Assuntos
Cerebelo/anormalidades , Cerebelo/metabolismo , Proteínas de Membrana/genética , Transtornos dos Movimentos/genética , Proteínas do Tecido Nervoso/genética , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Forma Celular/genética , Células Cultivadas , Cerebelo/patologia , Dendritos/metabolismo , Dendritos/patologia , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Citometria por Imagem , Camundongos , Camundongos Knockout , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/fisiopatologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/fisiopatologia , Neurogênese/genética , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Proteína Reelina , Coloração pela Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA