Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935537

RESUMO

Rapid hot-carrier/exciton cooling constitutes a major loss channel for photovoltaic efficiency. How to decelerate the hot-carrier/exciton relaxation remains a crux for achieving high-performance photovoltaic devices. Here, we demonstrate slow hot-exciton cooling that can be extended to hundreds of picoseconds in colloidal HgTe quantum dots (QDs). The energy loss rate is 1 order of magnitude smaller than bulk inorganic semiconductors, mediated by phonon bottleneck and interband biexciton Auger recombination (BAR) effects, which are both augmented at reduced QD sizes. The two effects are competitive with the emergence of multiple exciton generation. Intriguingly, BAR dominates even under low excitation fluences with a decrease in interparticle distance. Both experimental evidence and numerical evidence reveal that such efficient BAR derives from the tunneling-mediated interparticle excitonic coupling induced by wave function overlap between neighboring HgTe QDs in films. Thus, our study unveils the potential for realizing efficient hot-carrier/exciton solar cells based on HgTe QDs. Fundamentally, we reveal that the delocalized nature of quantum-confined wave function intensifies BAR. The interparticle excitonic coupling may cast light on the development of next-generation photoelectronic materials, which can retain the size-tunable confinement of colloidal semiconductor QDs while simultaneously maintaining high mobilities and conductivities typical for bulk semiconductor materials.

2.
Small ; : e2400745, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804826

RESUMO

Producing heterostructures of cesium lead halide perovskites and metal-chalcogenides in the form of colloidal nanocrystals can improve their optical features and stability, and also govern the recombination of charge carriers. Herein, the synthesis of red-emitting CsPbI3/ZnSe nanoheterostructures is reported via an in situ hot injection method, which provides the crystallization conditions for both components, subsequently leading to heteroepitaxial growth. Steady-state absorption and photoluminescence studies alongside X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence on a type-I band alignment for CsPbI3/ZnSe nanoheterostructures, which exhibit photoluminescence quantum yield of 96% due to the effective passivation of surface defects, and an enhancement in carrier lifetime. Furthermore, the heterostructure growth of ZnSe domains leads to significant improvement in the stability of the CsPbI3 nanocrystals under ambient conditions and against thermal and UV irradiation stress.

3.
Adv Mater ; : e2306518, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572367

RESUMO

A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange. The charge carrier diffusion length can be extended from 50 to 90 nm when the device active area consists of a bi-layer of cation-rich HgTe QDs capped with DMTD and FMT, respectively. As a result, the responsivity under 1340 nm illumination is boosted to 1 AW-1 at zero bias and up to 40 AW-1 under -1 V bias at room temperature. Due to high noise current density, the specific detectivity of these photodetectors reaches up to 1010 Jones at room temperature and under an inert atmosphere. Meanwhile, high photoconductive gain ensures a rise in the external quantum efficiency of up to 1000% under reverse bias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA