Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 607: 121009, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34391856

RESUMO

A novel concentric experimental set-up was used to investigate short-duration topical co-iontophoresis of cationic buflomedil hydrochloride (BUF) and anionic dexamethasone phosphate (DEX-P) to the oral mucosa. A constant current of 3.0 mA (0.6 mA/cm2 for BUF and 1.95 mA/cm2 for DEX-P) was applied to porcine esophageal mucosa for 5, 10 and 20 min. Iontophoresis for only 5 min increased total delivery of BUF from 29.8 ± 5.1 nmol/cm2 to 194.3 ± 23.8 nmol/cm2 and DEX-P from 29.4 ± 1.2 nmol/cm2 to 193.3 ± 19.8 nmol/cm2 as compared to passive controls. Quantification of drug between the electrode compartments reported on lateral ion migration. In the absence of current, DEX-P did not migrate laterally; however, iontophoresis for 5 min increased DEX-P delivery >5-fold under the cathodal compartment (its application area) and >8-fold in the adjacent "inter-electrode" area. Similarly, delivery of BUF increased ~6.8-fold under the anodal compartment and ~12.8-fold under the cathode. The results showed that co-iontophoresis enabled the controlled simultaneous delivery of BUF and DEX-P achieving therapeutically relevant concentrations after current application for only 5 min. Short duration topical co-iontophoresis of single or multiple therapeutics to the mucosa increases local bioavailability and presents a patient-friendly treatment for diseases of the oral cavity.


Assuntos
Iontoforese , Fibrose Oral Submucosa , Administração Cutânea , Animais , Dexametasona/análogos & derivados , Humanos , Mucosa Bucal , Pirrolidinas , Suínos
2.
Pharmaceutics ; 10(4)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544604

RESUMO

This study aimed at investigating the effect of electrical current profile upon the iontophoretic transport of (i) ascorbic acid (AA) and (ii) ellagic acid (EA), into porcine skin in vitro, and the impact of the physicochemical properties of both actives on their mechanism of transport when formulated in cosmetic compositions. The experiments were performed using a proprietary iontophoretic device containing a roller to apply the formulation. Three current profiles were tested: (i) galvanic direct current (DC), (ii) square unipolar pulse current (SPC), and (iii) galvanic direct current (DC) + pulse current (PC). The skin samples were collected at different sampling points, extracted and analyzed by HPLC. Results suggested that the DC + PC mode for only 5 min was able to significantly increase the delivery of AA from o/w cosmetic compositions. The use of this current profile might improve the skin penetration of AA due to electromigration and passive diffusion, the latter being facilitated by the physical enhancement method. The SPC mode significantly improved the passage of EA in its neutral form from cosmetic o/w formulations by electroosmosis. Tailoring specific electrical current modes considering the ionization state of active ingredients would allow the design of short and personalized cosmetic treatments that significantly improve the penetration efficiency of the active ingredients and possibly reduce the doses applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA