Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Regen Med ; 7(1): 30, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581202

RESUMO

Building and maintaining skeletal tissue requires the activity of skeletal stem and progenitor cells (SSPCs). Following injury, local pools of these SSPCs become active and coordinate to build new cartilage and bone tissues. While recent studies have identified specific markers for these SSPCs, how they become activated in different injury contexts is not well-understood. Here, using a model of large-scale rib bone regeneration in mice, we demonstrate that the growth factor, Sonic Hedgehog (SHH), is an early and essential driver of large-scale bone healing. Shh expression is broadly upregulated in the first few days following rib bone resection, and conditional knockout of Shh at early but not late post-injury stages severely inhibits cartilage callus formation and later bone regeneration. Whereas Smoothened (Smo), a key transmembrane component of the Hh pathway, is required in Sox9+ lineage cells for rib regeneration, we find that Shh is required in a Prrx1-expressing, Sox9-negative mesenchymal population. Intriguingly, upregulation of Shh expression and requirements for Shh and Smo may be unique to large-scale injuries, as they are dispensable for both complete rib and femur fracture repair. In addition, single-cell RNA sequencing of callus tissue from animals with deficient Hedgehog signaling reveals a depletion of Cxcl12-expressing cells, which may indicate failed recruitment of Cxcl12-expressing SSPCs during the regenerative response. These results reveal a mechanism by which Shh expression in the local injury environment unleashes large-scale regenerative abilities in the murine rib.

2.
Ann Rheum Dis ; 79(12): 1625-1634, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32963046

RESUMO

OBJECTIVES: Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA. METHODS: Fluorescent genetic cell-labelling and tracing mouse models were induced with tamoxifen to switch on reporter expression, as appropriate, followed by surgery to induce destabilisation of the medial meniscus. Contributions of fluorescently labelled cells to osteophytes after 2 or 8 weeks, and their molecular identity, were analysed by histology, immunofluorescence staining and RNA in situ hybridisation. Pdgfrα-H2BGFP mice and Pdgfrα-CreER mice crossed with multicolour Confetti reporter mice were used for identification and clonal tracing of mesenchymal progenitors. Mice carrying Col2-CreER, Nes-CreER, LepR-Cre, Grem1-CreER, Gdf5-Cre, Sox9-CreER or Prg4-CreER were crossed with tdTomato reporter mice to lineage-trace chondrocytes and stem/progenitor cell subpopulations. RESULTS: Articular chondrocytes, or skeletal stem cells identified by Nes, LepR or Grem1 expression, did not give rise to osteophytes. Instead, osteophytes derived from Pdgfrα-expressing stem/progenitor cells in periosteum and synovium that are descendants from the Gdf5-expressing embryonic joint interzone. Further, we show that Sox9-expressing progenitors in periosteum supplied hybrid skeletal cells to the early osteophyte, while Prg4-expressing progenitors from synovial lining contributed to cartilage capping the osteophyte, but not to bone. CONCLUSION: Our findings reveal distinct periosteal and synovial skeletal progenitors that cooperate to form osteophytes in OA. These cell populations could be targeted in disease modification for treatment of OA.


Assuntos
Osteoartrite/patologia , Osteófito/patologia , Periósteo/patologia , Células-Tronco/patologia , Membrana Sinovial/patologia , Animais , Linhagem da Célula , Camundongos
3.
Development ; 147(5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161063

RESUMO

Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.


Assuntos
Desenvolvimento Ósseo/fisiologia , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Periósteo/citologia , Células-Tronco/citologia , Animais , Células da Medula Óssea/citologia , Condrócitos/citologia , Lâmina de Crescimento/citologia , Lâmina de Crescimento/crescimento & desenvolvimento , Humanos , Camundongos , Osteoblastos/citologia , Peixe-Zebra
4.
Elife ; 82019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30983567

RESUMO

Most bones in mammals display a limited capacity for natural large-scale repair. The ribs are a notable exception, yet the source of their remarkable regenerative ability remains unknown. Here, we identify a Sox9-expressing periosteal subpopulation that orchestrates large-scale regeneration of murine rib bones. Deletion of the obligate Hedgehog co-receptor, Smoothened, in Sox9-expressing cells prior to injury results in a near-complete loss of callus formation and rib bone regeneration. In contrast to its role in development, Hedgehog signaling is dispensable for the proliferative expansion of callus cells in response to injury. Instead, Sox9-positive lineage cells require Hh signaling to stimulate neighboring cells to differentiate via an unknown signal into a skeletal cell type with dual chondrocyte/osteoblast properties. This type of callus cell may be critical for bridging large bone injuries. Thus despite contributing to only a subset of callus cells, Sox9-positive progenitors play a major role in orchestrating large-scale bone regeneration. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Diferenciação Celular , Regeneração , Costelas/crescimento & desenvolvimento , Costelas/lesões , Fatores de Transcrição SOX9/análise , Células-Tronco/química , Células-Tronco/fisiologia , Animais , Camundongos
5.
Biotechniques ; 65(4): 191-196, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30284932

RESUMO

The use of fluorescent tags to monitor protein expression and to lineage-trace cells has become a standard complement to standard histological techniques in the fields of embryology, pathology and regenerative medicine. Unfortunately, traditional paraffin embedding protocols can substantially diminish or abolish the native emission signal of the fluorophore of interest. To preserve the fluorescent signal, an alternative is to use cryosectioning; however, this can often result in undesirable artefacts such as tearing or shattering - particularly for mineralized tissues such as bone and cartilage. Here we present a method of using a commercially available tape to stabilize murine femur tissue, thus allowing for cryosectioning of cartilage and bone tissues carrying fluorescent tags without the need for demineralization.


Assuntos
Adesivos/química , Cartilagem/ultraestrutura , Crioultramicrotomia/métodos , Fêmur/ultraestrutura , Imagem Óptica/métodos , Animais , Corantes Fluorescentes/análise , Camundongos , Microscopia de Fluorescência/métodos , Inclusão do Tecido/métodos , Fixação de Tecidos/métodos
6.
Biochemistry ; 52(19): 3332-45, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23594148

RESUMO

As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células 3T3-L1 , Animais , Retículo Endoplasmático/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Oxirredução , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA