Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 158: 81-99, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661140

RESUMO

Since 2014, mass mortalities of mussels Mytilus spp. have occurred in production areas on the Atlantic coast of France. The aetiology of these outbreaks remained unknown until the bacterium Francisella halioticida was detected in some mussel mortality cases. This retrospective study was conducted to assess the association between F. halioticida and these mussel mortalities. Mussel batches (n = 45) from the Atlantic coast and English Channel were selected from archived individual samples (n = 863) collected either during or outside of mortality events between 2014 and 2017. All mussels were analysed by real-time PCR assays targeting F. halioticida; in addition, 185 were analysed using histological analysis and 178 by 16S rRNA metabarcoding. F. halioticida DNA was detected by real-time PCR and 16S rRNA metabarcoding in 282 and 34 mussels, respectively. Among these individuals, 82% (real-time PCR analysis) and 76% (16S rRNA metabarcoding analysis) were sampled during a mortality event. Histological analyses showed that moribund individuals had lesions mainly characterized by necrosis, haemocyte infiltration and granulomas. Risk factor analysis showed that mussel batches with more than 20% of PCR-positive individuals were more likely to have been sampled during a mortality event, and positive 16S rRNA metabarcoding batches increased the strength of the association with mortality by 11.6 times. The role of F. halioticida in mussel mortalities was determined by reviewing the available evidence. To this end, a causation criteria grid, tailored to marine diseases and molecular pathogen detection tools, allowed more evidence to be gathered on the causal role of this bacterium in mussel mortalities.


Assuntos
Francisella , RNA Ribossômico 16S , Animais , Francisella/genética , Francisella/isolamento & purificação , Francisella/classificação , França/epidemiologia , RNA Ribossômico 16S/genética , Mytilus/microbiologia , Estudos Retrospectivos
2.
Front Cell Infect Microbiol ; 12: 921136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909967

RESUMO

The flat oyster Ostrea edulis is an oyster species native to Europe. It has declined to functional extinction in many areas of the NE Atlantic for several decades. Factors explaining this decline include over-exploitation of natural populations and diseases like bonamiosis, regulated across both the EU and the wider world and caused by the intracellular protozoan parasite Bonamia ostreae. To date, very limited sequence data are available for this Haplosporidian species. We present here the first transcriptome of B. ostreae. As this protozoan is not yet culturable, it remains extremely challenging to obtain high-quality -omic data. Thanks to a specific parasite isolation protocol and a dedicated bioinformatic pipeline, we were able to obtain a high-quality transcriptome for an intracellular marine micro-eukaryote, which will be very helpful to better understand its biology and to consider the development of new relevant diagnostic tools.


Assuntos
Haplosporídios , Ostrea , Animais , Europa (Continente) , Haplosporídios/genética , Interações Hospedeiro-Parasita , Ostrea/genética , Ostrea/parasitologia , Transcriptoma
3.
Transbound Emerg Dis ; 69(5): e2041-e2058, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35353448

RESUMO

The Pacific cupped oyster Crassostrea gigas is one of the most 'globalized' marine invertebrates and its production is predominant in many parts of the world including Europe. However, it is threatened by mortality events associated with pathogenic microorganisms such as the virus OsHV-1 and the bacteria Vibrio aestuarianus. C. gigas is also a host for protozoan parasites including haplosporidians. In contrast with Haplosporidium nelsoni previously detected in Europe, H. costale was considered exotic although its presence in French oysters was suggested in the 1980s based on ultrastructural examination. Here, a combination of light and transmission electron microscopy, PCR and sequencing allowed characterizing the presence of the parasite in the context of low mortality events which occurred in 2019 in France. Histological observation revealed the presence of uninucleated, plasmodial and spore stages within the connective tissues of some oysters. Ultrastructural features were similar to H. costale ones in particular the presence of axe-shaped haplosporosomes in spore cytoplasms. Three fragments of the genome including partial small subunit rRNA gene, the ITS-1, 5.8S and ITS-2 array and part of the actin gene were successfully sequenced and grouped with H. costale homologous sequences. This is the first time that the presence of H. costale was confirmed in C. gigas in France. Furthermore, a TaqMan real-time PCR assay was developed and validated [DSe = 92.6% (78.2-99.8) and DSp = 95.5% (92.3-98.6)] to enable the rapid and specific detection of the parasite. The application of the PCR assay on archived samples revealed that the parasite has been present in French oyster populations at least since 2008. Considering the little information available on this parasite, the newly developed TaqMan assay will be very helpful to investigate the temporal and geographic distribution and the life cycle of the parasite in France and more generally in C. gigas geographic range.


Assuntos
Crassostrea , Parasitos , Actinas , Animais , Sequência de Bases , Crassostrea/microbiologia , Crassostrea/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
4.
Artigo em Inglês | MEDLINE | ID: mdl-33507857

RESUMO

Cockle mortality events have been reported in northern France since 2012. In the present study, we describe and investigate the implication of a potential bacterial causative agent in cockle mortality. Bacteria isolated from five different cockle mortality events were characterized and studied. Using phenotypic analysis combined with DNA-DNA hybridization (DDH) and whole genome sequencing, the isolates were shown to belong to Vibrio aestuarianus, a species regularly detected in France during oyster mortality events. Comparison of the strains from cockles with strains from French oysters and the type strain showed that the strains from cockles were genetically different to those from oysters and also different to the V. aestuarianus type strain. Moreover, the cockle and oyster strains were classified into two different, but close, groups both separated from the type strain by: (1) analyses of the ldh gene sequences; (2) DDH assays between 12/122 3T3T (LMG 31436T=DSM 109723T), a representative cockle strain, 02/041T (CIP 109791T=LMG 24517T) representative oyster strain and V. aestuarianus type strain LMG 7909T; (3) average nucleotide identity values calculated on the genomes; and (4) phenotypic traits. Finally, results of MALDI-TOF analyses also revealed specific peaks discriminating the three representative strains. The toxicity of representative strains of these cockle isolates was demonstrated by experimental infection of hatchery-produced cockles. The data therefore allow us to propose two novel subspecies of Vibrio aestuarianus: Vibrio aestuarianus subsp. cardii subsp. nov. for the cockle strains and Vibrio aestuarianus subsp. francensis subsp. nov. for the Pacific oyster strains, in addition to an emended description of the species Vibrio aestuarianus.


Assuntos
Cardiidae/microbiologia , Filogenia , Vibrio/classificação , Animais , Técnicas de Tipagem Bacteriana/métodos , Composição de Bases , DNA Bacteriano/genética , França , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vibrio/isolamento & purificação
5.
Prev Vet Med ; 183: 105126, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32919320

RESUMO

Aquaculture including shellfish production is an important food resource worldwide which is particularly vulnerable to infectious diseases. Marteilia refringens, Bonamia ostreae and Bonamia exitiosa are regulated protozoan parasites infecting flat oysters Ostrea edulis that are endemic in Europe. Although some PCR assays have been already developed for their detection, a formal validation to assess the performances of those tools is often lacking. In order to facilitate the diagnosis of flat oyster regulated diseases, we have developed and evaluated a new multiplex Taqman® PCR allowing the detection of both M. refringens and Bonamia sp. parasites in one step. First part of this work consisted in assessing analytical sensitivity and specificity of the new PCR assay. Then, diagnostic performances were assessed by testing a panel of field samples with the new real-time PCR and currently recommended conventional PCR methods for the detection of M. refringens and Bonamia sp. Samples were collected from the main flat oyster production sites in France (N = 386 for M. refringens and N = 349 for B. ostreae). In the absence of gold standard, diagnostic sensitivity and specificity of the new PCR were estimated through Bayesian latent class analysis (DSe 87,2% and DSp 98,4% for the detection M. refringens, DSe 77,5% and DSp 98,4% for the detection of Bonamia sp.). Those results suggest equivalent performances for the detection of Bonamia sp. and an improved sensitivity for the detection of M. refringens compared to commonly used conventional protocols. Finally, the new PCR was evaluated in the context of an inter-laboratory comparison study including 17 European laboratories. Results revealed a very good reproducibility with a global accordance (intra-laboratory precision) >96% and a global concordance (inter-laboratory precision) >93% for both targets, demonstrating that this new tool is easily transferable to different laboratory settings. This is the first assay designed to detect both Marteilia refringens and Bonamia sp. in a single step and it should allow reducing the number of analysis to monitor both diseases, and where relevant to demonstrate freedom from infection.


Assuntos
Aquicultura/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Ostrea/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Rhizaria/isolamento & purificação , Animais , França , Interações Hospedeiro-Parasita , Reprodutibilidade dos Testes
6.
Fish Shellfish Immunol ; 93: 958-964, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31442589

RESUMO

The protozoan parasite Bonamia ostreae has been associated with the decline of flat oyster Ostrea edulis populations in some European countries. Control of shellfish diseases mostly relies on prevention measures including transfer restrictions and stock management measures such as breeding programmes. These prevention and mitigation measures require a better understanding of interactions between host and pathogens. Previous in vitro studies allowed identifying apoptosis as a mechanism activated by the flat oyster in response to B. ostreae. However, these experiments also suggested that the parasite is able to regulate apoptosis in order to survive and multiply within hemocytes. By simplifying the conditions of infection, in vitro studies allow identifying most distinct features of the response of the host. In order to appreciate the relative importance of apoptosis in this response at the oyster scale, in vivo trials were carried out by injecting with parasites oysters from two French locations, Quiberon Bay (Brittany) and Diana Lagoon (Corsica). Apoptosis was investigated on pools of hemolymph from oysters collected at early and later times after injection using previously developed tools. Apoptotic cellular activities including intracytoplasmic calcium concentration, mitochondrial membrane potential and phosphatidyl serine externalization were analysed using flow cytometry. Moreover, the expression of flat oyster genes involved in both extrinsic and intrinsic pathways was measured using real time quantitative PCR.


Assuntos
Apoptose/imunologia , Haplosporídios/fisiologia , Interações Hospedeiro-Parasita/imunologia , Ostrea/imunologia , Animais , Citometria de Fluxo , França , Ostrea/parasitologia
7.
Parasit Vectors ; 11(1): 119, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499746

RESUMO

BACKGROUND: Microcell parasites are small intracellular protozoans mostly detected in molluscs and can be associated with mortalities. In 2010 and 2011, strong increases in mortality events were reported in different wild beds of the wedge clam Donax trunculus Linnaeus, along the Atlantic coast of France and the presence of potential pathogens, including microcells, was investigated. METHODS: Clams collected in different beds showing mortality were examined by histology. Based on histological observations, confirmatory analyses were carried out, including transmission electron microscopy (TEM) and molecular characterization. RESULTS: Histological analyses revealed the presence of small protozoans similar to microcell parasites in different tissues of Donax trunculus, particularly in muscular and connective tissues. TEM examination confirmed the intracellular localization of the protozoans. Moreover, the lack of haplosporosomes and mitochondria suggested that the observed parasites belong to the genus Mikrocytos Farley, Wolf & Elston, 1988. Mikrocytos genus-specific PCR and in situ hybridization results supported the microscopic observations. Sequence fragments of the 18S rRNA gene shared 75-83% identity with the different Mikrocytos spp. described previously, including Mikrocytos mackini Farley, Wolf & Elston, 1988 and M. boweri Abbott, Meyer, Lowe, Kim & Johnson, 2014. Phylogenetic analyses confirmed that the microcell parasites observed in Donax trunculus in France belong to the genus Mikrocytos and suggest the existence of two distinct species. CONCLUSIONS: Based on morphological, ultrastructural, molecular data and host information, the two microcell parasites detected in Donax trunculus belong to the genus Mikrocytos and are distinct from previously described members of this genus. This is the first report of Mikrocytos spp. found in France and infecting the clam Donax trunculus. Mikrocytos veneroïdes n. sp. was detected in different wild beds and Mikrocytos donaxi n. sp. was detected only in Audierne Bay.


Assuntos
Bivalves/parasitologia , Doenças Parasitárias em Animais/mortalidade , Animais , França , Interações Hospedeiro-Parasita , Hibridização In Situ , Parasitos , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias em Animais/patologia , Reação em Cadeia da Polimerase
8.
Int J Syst Evol Microbiol ; 66(11): 4580-4588, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498967

RESUMO

A Gram-negative, aerobic, non-motile bacterium, designated strain KC90BT, was isolated from the surface of a cell of the marine diatom Thalassiosira delicatula. The bacterial cells were pleomorphic and formed very small, beige colonies on marine agar. Optimal growth was obtained at 25 °C, at pH 6.5-7.5 and in the presence of 1.5-2.0 % (w/v) NaCl. Phylogenetic analyses based on its 16S rRNA gene sequence revealed that strain KC90BT belonged to the Roseobacter clade and formed a monophyletic cluster with the sequences of Boseongicola aestuarii, Profundibacterium mesophilum, Hwanghaeicola aestuarii, Maribius pelagius and M. salinus, showing 91.4-95.7 % sequence similarities. Ubiquinone Q-10 was the predominant lipoquinone but a significant amount of ubiquinone Q-9 was also detected. The major cellular fatty acids were C18 : 1ω7c, 11-methyl C18 : 1ω7c and C18 : 0. Strain KC90BT also contained specific fatty acids (C17 : 0, anteiso-C15 : 0 and anteiso-C17 : 0) that were not detected in its closest described relatives. The major polar lipids of strain KC90BT comprised phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol and an unidentified aminolipid. The DNA G+C content of strain KC90BT was 65.2 mol%. The phylogenetic analysis of strain KC90BT, together with the differential phenotypic and chemotaxonomic properties demonstrate that strain KC90BT is distinct from type strains of B. aestuarii, P. mesophilum, H. aestuarii, M. pelagius and M. salinus. Based on the data presented in this study, strain KC90BT represents a novel genus and species within the family Rhodobacteraceae, for which the name Silicimonas algicola gen. nov., sp. nov. is proposed. The type strain is KC90BT (=DSM 103371T=RCC 4681T).


Assuntos
Diatomáceas/microbiologia , Filogenia , Rhodobacteraceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA