Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chronobiol Int ; 41(7): 959-970, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975732

RESUMO

Most organisms synchronize to an approximately 24-hour (circadian) rhythm. This study introduces a novel deep learning-powered video tracking method to assess the stability, fragmentation, robustness and synchronization of activity rhythms in Xyrichtys novacula. Experimental X. novacula were distributed into three groups and monitored for synchronization to a 14/10 hours of light/dark to assess acclimation to laboratory conditions. Group GP7 acclimated for 1 week and was tested from days 7 to 14, GP14 acclimated for 14 days and was tested from days 14 to 21 and GP21 acclimated for 21 days and was tested from days 21 to 28. Telemetry data from individuals in the wild depicted their natural behavior. Wild fish displayed a robust and minimally fragmented rhythm, entrained to the natural photoperiod. Under laboratory conditions, differences in activity levels were observed between light and dark phases. However, no differences were observed in activity rhythm metrics among laboratory groups related to acclimation period. Notably, longer acclimation (GP14 and GP21) led to a larger proportion of individuals displaying rhythm synchronization with the imposed photoperiod. Our work introduces a novel approach for monitoring biological rhythms in laboratory conditions, employing a specifically engineered video tracking system based on deep learning, adaptable for other species.


Assuntos
Aclimatação , Ritmo Circadiano , Aprendizado Profundo , Fotoperíodo , Animais , Aclimatação/fisiologia , Ritmo Circadiano/fisiologia , Gravação em Vídeo , Peixes/fisiologia , Comportamento Animal/fisiologia
2.
Biomater Sci ; 12(15): 3866-3881, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910521

RESUMO

Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials, investigating safety and feasibility of cTE construct transplantation in failing hearts. However, the lack of well-established preservation methods poses a hindrance to further scalability, commercialization, and transportation, thereby reducing their clinical implementation. In this study, hypothermic preservation (4 °C) and two methods for cryopreservation (i.e., a slow and fast cooling approach to -196 °C and -150 °C, respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs, composed of cardiomyocytes of different maturity, were preserved for three days, using several commercially available preservation protocols and solutions. Cardiomyocyte viability, function (beat rate and calcium handling), and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes' age did not influence post-rewarming viability, however, it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore, fast freezing outperformed slow freezing, but both viability and function were severely reduced after rewarming. In conclusion, whereas long-term preservation remains a challenge, hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation, aiding in off-the-shelf availability, ultimately increasing their clinical applicability.


Assuntos
Criopreservação , Miócitos Cardíacos , Engenharia Tecidual , Humanos , Miócitos Cardíacos/citologia , Sobrevivência Celular/efeitos dos fármacos , Alicerces Teciduais/química , Células-Tronco Pluripotentes Induzidas/citologia , Células Cultivadas , Hidrogéis/química , Hidrogéis/farmacologia
3.
Trends Biotechnol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653588

RESUMO

For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.

4.
ACS Biomater Sci Eng ; 10(2): 987-997, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38234159

RESUMO

A combination of human-induced pluripotent stem cells (hiPSCs) and 3D microtissue culture techniques allows the generation of models that recapitulate the cardiac microenvironment for preclinical research of new treatments. In particular, spheroids represent the simplest approach to culture cells in 3D and generate gradients of cellular access to the media, mimicking the effects of an ischemic event. However, previous models required incubation under low oxygen conditions or deprived nutrient media to recreate ischemia. Here, we describe the generation of large spheroids (i.e., larger than 500 µm diameter) that self-induce an ischemic core. Spheroids were generated by coculture of cardiomyocytes derived from hiPSCs (hiPSC-CMs) and primary human cardiac fibroblast (hCF). In the proper medium, cells formed aggregates that generated an ischemic core 2 days after seeding. Spheroids also showed spontaneous cellular reorganization after 10 days, with hiPSC-CMs located at the center and surrounded by hCFs. This led to an increase in microtissue stiffness, characterized by the implementation of a constriction assay. All in all, these phenomena are hints of the fibrotic tissue remodeling secondary to a cardiac ischemic event, thus demonstrating the suitability of these spheroids for the modeling of human cardiac ischemia and its potential application for new treatments and drug research.


Assuntos
Isquemia Miocárdica , Miócitos Cardíacos , Humanos , Constrição , Células Cultivadas , Isquemia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA