RESUMO
Alternative splicing is an important regulatory process that produces multiple transcripts from a single gene, significantly modulating the transcriptome and potentially the proteome, during development and in response to environmental cues. In the first part of this review, we summarize recent advances and highlight the accumulated knowledge on the biological roles of alternative splicing isoforms that are key for different plant responses and during development. Remarkably, we found that many of the studies in this area use similar methodological approaches that need to be improved to gain more accurate conclusions, since they generally presume that stable isoforms undoubtedly have coding capacities. This is mostly done without data indicating that a particular RNA isoform is in fact translated. So, in the latter part of the review, we propose a thorough strategy to analyze, evaluate, and characterize putative functions for alternative splicing isoforms of interest.
Assuntos
Processamento Alternativo , Arabidopsis , Arabidopsis/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plantas/genética , Plantas/metabolismoRESUMO
Root Hairs (RHs) growth is influenced by endogenous and by external environmental signals that coordinately regulate its final cell size. We have recently determined that RH growth was unexpectedly boosted when Arabidopsis thaliana seedlings are cultivated at low temperatures. It was proposed that RH growth plasticity in response to low temperature was linked to a reduced nutrient availability in the media. Here, we explore the molecular basis of this RH growth response by using a Genome Wide Association Study (GWAS) approach using Arabidopsis thaliana natural accessions. We identify the poorly characterized PEROXIDASE 62 (PRX62) and a related protein PRX69 as key proteins under moderate low temperature stress. Strikingly, a cell wall protein extensin (EXT) reporter reveals the effect of peroxidase activity on EXT cell wall association at 10 °C in the RH apical zone. Collectively, our results indicate that PRX62, and to a lesser extent PRX69, are key apoplastic PRXs that modulate ROS-homeostasis and cell wall EXT-insolubilization linked to RH elongation at low temperature.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla , Peroxidases/genética , Peroxidases/metabolismo , Raízes de Plantas/metabolismo , TemperaturaRESUMO
For plants, light is the source of energy and the most relevant regulator of growth and adaptations to the environment by inducing changes in gene expression at various levels, including alternative splicing. Light-triggered chloroplast retrograde signals control alternative splicing in Arabidopsis thaliana. Here, we provide evidence that light regulates the expression of a core set of splicing-related factors in roots. Alternative splicing responses in roots are not directly caused by light but are instead most likely triggered by photosynthesized sugars. The target of rapamycin (TOR) kinase plays a key role in this shoot-to-root signaling pathway. Knocking down TOR expression or pharmacologically inhibiting TOR activity disrupts the alternative splicing responses to light and exogenous sugars in roots. Consistently, splicing decisions are modulated by mitochondrial activity in roots. In conclusion, by activating the TOR pathway, sugars act as mobile signals to coordinate alternative splicing responses to light throughout the whole plant.
Assuntos
Processamento Alternativo/genética , Luz , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas , Sirolimo/metabolismoRESUMO
Early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven crucial during the efforts to mitigate the effects of the COVID-19 pandemic. Several diagnostic methods have emerged in the past few months, each with different shortcomings and limitations. The current gold standard, RT-qPCR using fluorescent probes, relies on demanding equipment requirements plus the high costs of the probes and specific reaction mixes. To broaden the possibilities of reagents and thermocyclers that could be allocated towards this task, we have optimized an alternative strategy for RT-qPCR diagnosis. This is based on a widely used DNA-intercalating dye and can be implemented with several different qPCR reagents and instruments. Remarkably, the proposed qPCR method performs similarly to the broadly used TaqMan-based detection, in terms of specificity and sensitivity, thus representing a reliable tool. We think that, through enabling the use of vast range of thermocycler models and laboratory facilities for SARS-CoV-2 diagnosis, the alternative proposed here can increase dramatically the testing capability, especially in countries with limited access to costly technology and reagents.
Assuntos
Benzotiazóis/química , Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Diaminas/química , Substâncias Intercalantes/química , Quinolinas/química , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/normas , DNA/análise , DNA/biossíntese , Primers do DNA/química , Primers do DNA/metabolismo , Humanos , Nasofaringe/virologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e EspecificidadeRESUMO
Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance.
Assuntos
Arabidopsis/genética , Cromatina/genética , Estágios do Ciclo de Vida/genética , Luz , RNA Polimerase II/genética , Transcrição Gênica/genética , Processamento Alternativo/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , RNA Polimerase II/metabolismoRESUMO
Seed dormancy and germination are relevant processes for a successful seedling establishment in the field. Light is one of the most important environmental factors involved in the relief of dormancy to promote seed germination. In Arabidopsis thaliana seeds, phytochrome photoreceptors tightly regulate gene expression at different levels. The contribution of alternative splicing (AS) regulation in the photocontrol of seed germination is still unknown. The aim of this work is to study gene expression modulated by light during germination of A. thaliana seeds, with focus on AS changes. Hence, we evaluated transcriptome-wide changes in stratified seeds irradiated with a pulse of red (Rp) or far-red (FRp) by RNA sequencing (RNA-seq). Our results show that the Rp changes the expression of â¼20% of the transcriptome and modifies the AS pattern of 226 genes associated with mRNA processing, RNA splicing, and mRNA metabolic processes. We further confirmed these effects for some of the affected AS events. Interestingly, the reverse transcriptase-polymerase chain reaction (RT-PCR) analyses show that the Rp modulates the AS of splicing-related factors (At-SR30, At-RS31a, At-RS31, and At-U2AF65A), a light-signaling component (At-PIF6), and a dormancy-related gene (At-DRM1). Furthermore, while the phytochrome B (phyB) is responsible for the AS pattern changes of At-U2AF65A and At-PIF6, the regulation of the other AS events is independent of this photoreceptor. We conclude that (i) Rp triggers AS changes in some splicing factors, light-signaling components, and dormancy/germination regulators; (ii) phyB modulates only some of these AS events; and (iii) AS events are regulated by R and FR light, but this regulation is not directly associated with the intensity of germination response. These data will help in boosting research in the splicing field and our understanding about the role of this mechanism during the photocontrol of seed germination.
RESUMO
Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts. Here, we show that light promotes RNA polymerase II (Pol II) elongation in the affected genes, whereas in darkness, elongation is lower. These changes in transcription are consistent with elongation causing the observed changes in alternative splicing, as revealed by different drug treatments and genetic evidence. The light control of splicing and elongation is abolished in an Arabidopsis mutant defective in the transcription factor IIS (TFIIS). We report that the chloroplast control of nuclear alternative splicing in plants responds to the kinetic coupling mechanism found in mammalian cells, providing unique evidence that coupling is important for a whole organism to respond to environmental cues.