Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Breast Cancer Res ; 26(1): 4, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172915

RESUMO

BACKGROUND: Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS: To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS: An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS: The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
2.
J Med Chem ; 65(13): 9206-9229, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763499

RESUMO

The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time- and dose-dependent downregulation of a proximal biomarker could be shown.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
3.
Stem Cells Int ; 2019: 8347595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918523

RESUMO

Cancer stem cells (CSCs) have recently raised great interest as a promising biological system for designing effective cancer therapies. The scarcity of CSCs in vivo and the consequent low numbers obtained from biopsies represent a major hurdle to the development of such strategies. It is therefore necessary to design robust scalable methods to enable efficient expansion of bona fide CSCs in vitro. Here, we evaluated the applicability of computer-controlled bioreactors combined with 3D aggregate culture and microcarrier technology, widely used in stem cell bioprocessing, for the expansion and enrichment of CSCs isolated from different types of solid tumors-colorectal cancer (CRC) and non-small-cell lung cancer (NSCLC) from two patients. Results show that these culture strategies improved cell expansion and CSC enrichment. Both patient-derived CSC lines were able to grow on microcarriers, the best results being achieved for PPlus 102-L, Pro-F 102-L, Fact 102-L, and CGEN 102-L beads (5-fold and 40-fold increase in total cell concentration for CRC and NSCLC cells, respectively, in 6 days). As for 3D aggregate culture strategy, the cell proliferation profile was donor dependent. NSCLC cells were the only cells able to form aggregates and proliferate, and the flat-bottom bioreactor vessel equipped with a trapezoid-shaped paddle impeller was the most efficient configuration for cell growth (21-fold increase in cell concentration achieved in 8 days). Serum-free medium promotes CSC enrichment in both 3D aggregate and microcarrier cultures. The protocols developed herein for CSC expansion have the potential to be transferred to clinical and industrial settings, providing key insights to guide bioprocess design towards the production of enriched CSC cultures in higher quantity and improved quality.

4.
Biomedicines ; 6(4)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388742

RESUMO

Breast cancer is the second leading cause of cancer deaths among women in the world. Treatment has been improved and, in combination with early detection, this has resulted in reduced mortality rates. Further improvement in therapy development is however warranted. This will be particularly important for certain sub-classes of breast cancer, such as triple-negative breast cancer, where currently no specific therapies are available. An important therapy development focus emerges from the notion that dysregulation of two major signaling pathways, Notch and Wnt signaling, are major drivers for breast cancer development. In this review, we discuss recent insights into the Notch and Wnt signaling pathways and into how they act synergistically both in normal development and cancer. We also discuss how dysregulation of the two pathways contributes to breast cancer and strategies to develop novel breast cancer therapies starting from a Notch and Wnt dysregulation perspective.

5.
Haematologica ; 92(3): 323-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17339181

RESUMO

BACKGROUND AND OBJECTIVES: Stem cells play an important role in the pathogenesis and maintenance of most malignant tumors. Acute myeloid leukemia (AML) is a stem cell disease. The inefficient targeting of the leukemic stem cells (LSC) is considered responsible for relapse after the induction of complete hematologic remission (CR) in AML. Acute promyelocytic leukemia (APL) is a subtype of AML characterized by the t(15;17) translocation and expression of the PML/RARalpha fusion protein. Treatment of APL with all-trans retinoic acid (ATRA) induces CR, but not molecular remission (CMR), because the fusion transcript remains detectable, followed by relapse within a few months. Arsenic induces high rates of CR and CMR followed by a long relapse-free survival (RFS). Here we compared the effects of ATRA and arsenic on PML/RARalpha-positive stem cell compartments. DESIGN AND METHODS: As models for the PML/RARalpha-positive LSC we used: (i) Sca1+/lin- murine HSC retrovirally transduced with PML/RARalpha; (ii) LSC from mice with PML/RARalpha-positive leukemia; (iii) the side population of the APL cell line NB4. RESULTS: In contrast to ATRA, arsenic abolishes the aberrant stem cell capacity of PML/RARalpha-positive stem cells. Arsenic had no apparent influence on the proliferation of PML/RARalpha-positive stem cells, whereas ATRA greatly increased the proliferation of these cells. Furthermore ATRA induces proliferation of APL-derived stem cells, whereas arsenic inhibits their growth. INTERPRETATIONS AND CONCLUSIONS: Taken together our data suggest a relationship between the capacity of a compound to target the leukemia-initiating cell and its ability to induce long relapse-free survival. These data strongly support the importance of efficient LSC-targeting for the outcome of patients with leukemia.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Inibidores do Crescimento/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Leucemia Promielocítica Aguda/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Óxidos/farmacologia , Animais , Trióxido de Arsênio , Ataxina-1 , Ataxinas , Biomarcadores Tumorais/análise , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/análise , Proteínas Nucleares/análise , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Ensaio Tumoral de Célula-Tronco
6.
Cancer Res ; 65(14): 6080-8, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16024608

RESUMO

Acute myeloid leukemia is characterized by a differentiation block as well as by an increased self-renewal of hematopoietic precursors in the bone marrow. This phenotype is induced by specific acute myeloid leukemia-associated translocations, such as t(15;17) and t(11;17), which involve an identical portion of the retinoic acid receptor alpha (RARalpha) and either the promyelocytic leukemia (PML) or promyelocytic zinc finger (PLZF) genes, respectively. The resulting fusion proteins form high molecular weight complexes and aberrantly bind several histone deacetylase-recruiting nuclear corepressor complexes. The amino-terminal BTB/POZ domain is indispensable for the capacity of PLZF to form high molecular weight complexes. Here, we studied the role of dimerization and binding to histone deacetylase-recruiting nuclear corepressor complexes for the induction of the leukemic phenotype by PLZF/RARalpha and we show that (a) the BTB/POZ domain mediates the oligomerization of PLZF/RARalpha; (b) mutations that inhibit dimerization of PLZF do the same in PLZF/RARalpha; (c) the PLZF/RARalpha-related block of differentiation requires an intact BTB/POZ domain; (d) the mutations interfering with either folding of the BTB/POZ domain or with its charged pocket prevent the self-renewal of PLZF/RARalpha-positive hematopoietic stem cells. Taken together, these data provide evidence that the dimerization capacity and the formation of a functionally charged pocket are indispensable for the PLZF/RARalpha-induced leukemogenesis.


Assuntos
Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/metabolismo , Doença Aguda , Animais , Células COS , Dimerização , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Mutação Puntual , Regiões Promotoras Genéticas , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Transcrição Gênica , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA