RESUMO
Clinical records (n = 24) with an established diagnosis of 5α-reductase-2 deficiency were reviewed. A previous misdiagnosis was present in about 70% (period from first observation to definitive diagnosis: 9.1 ± 10.8 years), and in 8 children gonadal removal was performed before certain diagnosis. Initial sex assignment was female in 16/24 (67%) and male in 8/24 (33%) cases. After diagnosis, sex re-assignment was performed in 5 babies (4 girls to male sex; 1 boy to female sex). Baseline testosterone/DHT ratio was diagnostic in 6/12 subjects (first months of life n = 4; puberty n = 2), while post-hCG testosterone/DHT ratio was diagnostic in all tested individuals (choosing both the cut-off value 15 or 10). Eighteen different mutations in the steroid-5α-reductase-2 (SRD5A2) gene were identified, 5 of which have never been reported. In conclusion, a time lag exists before the diagnosis of 5α-reductase-2 deficiency is established; sex assignment and gonadal removal may be performed before certain diagnosis. Sex re-assignment is usually female to male, but the contrary may occur. A large variability in clinical phenotypes and genetic mutations was present in this cohort. Accurate endocrine evaluation is recommended in babies possibly affected by 5α-reductase-2 deficiency, since the use of appropriate cut-off values of testosterone/DHT ratio after hCG stimulation may permit to select individuals for SRD5A2 gene analysis. A genotype-phenotype correlation was not found in this study.
Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Di-Hidrotestosterona/sangue , Transtornos do Desenvolvimento Sexual/sangue , Transtornos do Desenvolvimento Sexual/enzimologia , Transtornos do Desenvolvimento Sexual/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Testosterona/sangue , Adulto JovemRESUMO
BACKGROUND: Steroidogenic factor 1, encoded by the NR5A1 gene, is a key regulator of endocrine function within the hypothalamic-pituitary-steroidogenic axis. Both homozygous, compound heterozygous and heterozygous mutations in the NR5A1 gene may determine 46,XY disorders of sex development (DSD). PATIENTS AND METHODS: NR5A1 gene sequencing was performed in a cohort of 6 patients with 46,XY DSD without specific diagnosis. RESULTS: Heterozygous NR5A1 gene mutations were found in 2 girls, aged 0.5 years and 14 years. The older girl harbored the c.250C>T transition in exon 4 (p.Arg84Cys), previously reported in a Japanese girl. The younger girl presented a de novo novel exon 6 heterozygous frameshift mutation (c.1074dupG) in codon 359 associated with the p.Gly146Ala polymorphism the latter inherited from her father. This baby showed severe impairment of androgen secretion from the first months of life. Overt adrenal insufficiency did not occur, but the older girl showed subnormal cortisol peak after ACTH stimulation. CONCLUSIONS: NR5A1 gene mutations are a relatively frequent cause of 46,XY DSD in humans. Clear indications for management of these individuals remain elusive, mainly when diagnosis is made in infancy. Long-term monitoring of adrenal function should be recommended.