Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Gut Microbes ; 16(1): 2297872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165200

RESUMO

Hyperbaric oxygen (HBO) therapy is a well-established method for improving tissue oxygenation and is typically used for the treatment of various inflammatory conditions, including infectious diseases. However, its effect on the intestinal mucosa, a microenvironment known to be physiologically hypoxic, remains unclear. Here, we demonstrated that daily treatment with hyperbaric oxygen affects gut microbiome composition, worsening antibiotic-induced dysbiosis. Accordingly, HBO-treated mice were more susceptible to Clostridioides difficile infection (CDI), an enteric pathogen highly associated with antibiotic-induced colitis. These observations were closely linked with a decline in the level of microbiota-derived short-chain fatty acids (SCFAs). Butyrate, a SCFA produced primarily by anaerobic microbial species, mitigated HBO-induced susceptibility to CDI and increased epithelial barrier integrity by improving group 3 innate lymphoid cell (ILC3) responses. Mice displaying tissue-specific deletion of HIF-1 in RORγt-positive cells exhibited no protective effect of butyrate during CDI. In contrast, the reinforcement of HIF-1 signaling in RORγt-positive cells through the conditional deletion of VHL mitigated disease outcome, even after HBO therapy. Taken together, we conclude that HBO induces intestinal dysbiosis and impairs the production of SCFAs affecting the HIF-1α-IL-22 axis in ILC3 and worsening the response of mice to subsequent C. difficile infection.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Oxigenoterapia Hiperbárica , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Imunidade Inata , Oxigenoterapia Hiperbárica/efeitos adversos , Interleucina 22 , Disbiose/terapia , Linfócitos , Butiratos/farmacologia , Ácidos Graxos Voláteis/farmacologia , Antibacterianos/farmacologia
2.
Elife ; 122023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523305

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos , Linfócitos T Auxiliares-Indutores , Pulmão
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047304

RESUMO

Sickle cell disease (SCD) is an inherited blood disorder caused by a ß-globin gene point mutation that results in the production of sickle hemoglobin that polymerizes upon deoxygenation, causing the sickling of red blood cells (RBCs). RBC deformation initiates a sequence of events leading to multiple complications, such as hemolytic anemia, vaso-occlusion, chronic inflammation, and tissue damage. Macrophages participate in extravascular hemolysis by removing damaged RBCs, hence preventing the release of free hemoglobin and heme, and triggering inflammation. Upon erythrophagocytosis, macrophages metabolize RBC-derived hemoglobin, activating mechanisms responsible for recycling iron, which is then used for the generation of new RBCs to try to compensate for anemia. In the bone marrow, macrophages can create specialized niches, known as erythroblastic islands (EBIs), which regulate erythropoiesis. Anemia and inflammation present in SCD may trigger mechanisms of stress erythropoiesis, intensifying RBC generation by expanding the number of EBIs in the bone marrow and creating new ones in extramedullary sites. In the current review, we discuss the distinct mechanisms that could induce stress erythropoiesis in SCD, potentially shifting the macrophage phenotype to an inflammatory profile, and changing their supporting role necessary for the proliferation and differentiation of erythroid cells in the disease. The knowledge of the soluble factors, cell surface and intracellular molecules expressed by EBI macrophages that contribute to begin and end the RBC's lifespan, as well as the understanding of their signaling pathways in SCD, may reveal potential targets to control the pathophysiology of the disease.


Assuntos
Anemia Falciforme , Linfo-Histiocitose Hemofagocítica , Humanos , Eritropoese , Eritrócitos , Macrófagos/metabolismo , Inflamação/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902230

RESUMO

Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR-/-) to characterize the disease. MAYV inoculations in the hind paws of IFNAR-/- mice result in visible paw inflammation, evolve into a disseminated infection and involve the activation of immune responses and inflammation. The histological analysis of inflamed paws indicated edema at the dermis and between muscle fibers and ligaments. Paw edema affected multiple tissues and was associated with MAYV replication, the local production of CXCL1 and the recruitment of granulocytes and mononuclear leukocytes to muscle. We developed a semi-automated X-ray microtomography method to visualize both soft tissue and bone, allowing for the quantification of MAYV-induced paw edema in 3D with a voxel size of 69 µm3. The results confirmed early edema onset and spreading through multiple tissues in inoculated paws. In conclusion, we detailed features of MAYV-induced systemic disease and the manifestation of paw edema in a mouse model extensively used to study infection with alphaviruses. The participation of lymphocytes and neutrophils and expression of CXCL1 are key features in both systemic and local manifestations of MAYV disease.


Assuntos
Infecções por Alphavirus , Alphavirus , Animais , Camundongos , Infecções por Alphavirus/patologia , Inflamação , Síncrotrons , Microtomografia por Raio-X
5.
Hematol Transfus Cell Ther ; 44(4): 574-581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117137

RESUMO

The development of red blood cells (RBCs), or erythropoiesis, occurs in specialized niches in the bone marrow, called erythroblastic islands, composed of a central macrophage surrounded by erythroblasts at different stages of differentiation. Upon anemia or hypoxemia, erythropoiesis extends to extramedullary sites, mainly spleen and liver, a process known as stress erythropoiesis, leading to the expansion of erythroid progenitors, iron recruitment and increased production of reticulocytes and mature RBCs. Macrophages are key cells in both homeostatic and stress erythropoiesis, providing conditions for erythroid cells to survive, proliferate and differentiate. During RBCs aging and injury, macrophages play a fundamental role again, performing the clearance of these cells and recycling iron for new erythroblasts in development. Thus, macrophages are crucial components of the RBCs turnover and in this review, we aimed to cover the main known mechanisms involved in the process of birth and death of RBCs, highlighting the importance of macrophage functions in the whole RBC lifecycle.

6.
Photodiagnosis Photodyn Ther ; 39: 103015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843562

RESUMO

Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.


Assuntos
COVID-19 , Fotoquimioterapia , Desinfecção/métodos , Humanos , Fotoquimioterapia/métodos , SARS-CoV-2 , Saliva , Raios Ultravioleta
7.
Viruses ; 13(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834934

RESUMO

A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Vacinação , Adenoviridae , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Brasil/epidemiologia , COVID-19/prevenção & controle , Teste Sorológico para COVID-19 , Estudos de Coortes , Surtos de Doenças/estatística & dados numéricos , Feminino , Vetores Genéticos , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , RNA Viral , Vacinas de Produtos Inativados , Sequenciamento Completo do Genoma , Adulto Jovem
8.
Lancet Microbe ; 2(10): e527-e535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34258603

RESUMO

BACKGROUND: Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. METHODS: We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). FINDINGS: In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT50s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT50s below limit of detection). Median VNT50s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests. INTERPRETATION: SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. FUNDING: São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Brasil/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Estados Unidos , Vacinação
10.
Viruses ; 12(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708342

RESUMO

Oropouche orthobunyavirus (OROV) is an emerging arbovirus with a high potential of dissemination in America. Little is known about the role of peripheral blood mononuclear cells (PBMC) response during OROV infection in humans. Thus, to evaluate human leukocytes susceptibility, permissiveness and immune response during OROV infection, we applied RNA hybridization, qRT-PCR and cell-based assays to quantify viral antigens, genome, antigenome and gene expression in different cells. First, we observed OROV replication in human leukocytes lineages as THP-1 monocytes, Jeko-1 B cells and Jurkat T cells. Interestingly, cell viability and viral particle detection are maintained in these cells, even after successive passages. PBMCs from healthy donors were susceptible but the infection was not productive, since neither antigenome nor infectious particle was found in the supernatant of infected PBMCs. In fact, only viral antigens and small quantities of OROV genome were detected at 24 hpi in lymphocytes, monocytes and CD11c+ cells. Finally, activation of the Interferon (IFN) response was essential to restrict OROV replication in human PBMCs. Increased expression of type I/III IFNs, ISGs and inflammatory cytokines was detected in the first 24 hpi and viral replication was re-established after blocking IFNAR or treating cells with glucocorticoid. Thus, in short, our results show OROV is able to infect and remain in low titers in human T cells, monocytes, DCs and B cells as a consequence of an effective IFN response after infection, indicating the possibility of leukocytes serving as a trojan horse in specific microenvironments during immunosuppression.


Assuntos
Infecções por Bunyaviridae/metabolismo , Leucócitos Mononucleares/virologia , Orthobunyavirus , RNA Viral/metabolismo , Citometria de Fluxo , Imunofluorescência , Genoma Viral/genética , Humanos , Microscopia Confocal , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Replicação Viral
12.
J Immunol ; 204(8): 2257-2268, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169845

RESUMO

Plasmacytoid dendritic cells (pDCs) produce abundant type I IFNs (IFN-I) in response to viral nucleic acids. Generation of pDCs from bone marrow dendritic cell (DC) progenitors and their maintenance is driven by the transcription factor E2-2 and inhibited by its repressor Id2. In this study, we find that mouse pDCs selectively express the receptor for LIF that signals through STAT3. Stimulation of pDCs with LIF inhibited IFN-I, TNF, and IL-6 responses to CpG and induced expression of the STAT3 targets SOCS3 and Bcl3, which inhibit IFN-I and NF-κB signaling. Moreover, although STAT3 has been also reported to induce E2-2, LIF paradoxically induced its repressor Id2. A late-stage bone marrow DC progenitor expressed low amounts of LIFR and developed into pDCs less efficiently after being exposed to LIF, consistent with the induction of Id2. Conversely, pDC development and serum IFN-I responses to lymphocytic choriomeningitis virus infection were augmented in newly generated mice lacking LIFR in either CD11c+ or hematopoietic cells. Thus, an LIF-driven STAT3 pathway induces SOCS3, Bcl3, and Id2, which render pDCs and late DC progenitors refractory to physiological stimuli controlling pDC functions and development. This pathway can be potentially exploited to prevent inappropriate secretion of IFN-I in autoimmune diseases or promote IFN-I secretion during viral infections.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Fator Inibidor de Leucemia/metabolismo , Animais , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia
13.
Front Immunol ; 11: 617962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613546

RESUMO

Sickle cell disease (SCD), one of the most common hemoglobinopathies worldwide, is characterized by a chronic inflammatory component, with systemic release of inflammatory cytokines, due to hemolysis and vaso-occlusive processes. Patients with SCD demonstrate dysfunctional T and B lymphocyte responses, and they are more susceptible to infection. Although dendritic cells (DCs) are the main component responsible for activating and polarizing lymphocytic function, and are able to produce pro-inflammatory cytokines found in the serum of patients with SCD, minimal studies have thus far been devoted to these cells. In the present study, we identified the subpopulations of circulating DCs in patients with SCD, and found that the bloodstream of the patients showed higher numbers and percentages of DCs than that of healthy individuals. Among all the main DCs subsets, inflammatory DCs (CD14+ DCs) were responsible for this rise and correlated with higher reticulocyte count. The patients had more activated monocyte-derived DCs (mo-DCs), which produced MCP-1, IL-6, and IL-8 in culture. We found that a CD14+ mo-DC subset present in culture from some of the patients was the more activated subset and was mainly responsible for cytokine production, and this subset was also responsible for IL-17 production in co-culture with T lymphocytes. Finally, we suggest an involvement of heme oxygenase in the upregulation of CD14 in mo-DCs from the patients, indicating a potential mechanism for inducing inflammatory DC differentiation from circulating monocytes in the patients, which correlated with inflammatory cytokine production, T lymphocyte response skewing, and reticulocyte count.


Assuntos
Anemia Falciforme/imunologia , Células Dendríticas/imunologia , Diferenciação Celular/imunologia , Humanos , Inflamação/imunologia , Ativação Linfocitária/imunologia , Células Th17/imunologia
14.
Sci Rep ; 9(1): 14766, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611578

RESUMO

Type B coxsackieviruses (CVB) are enteroviruses responsible for a common infectious myocarditis and pancreatitis. DCs and regulatory T cells (Tregs) are key players in controlling virus replication and regulating the immune response and tissue damage, respectively. However, the mechanisms underlying cellular migration to target tissues remain unclear. In the present study, we found that CVB5 infection induced CCL17 production and controlled the migration of CCR4+ DCs and CCR4+ Tregs to the pancreatic lymph nodes (pLN). CVB5 infection of CCR4-/- mice reduced the migration of the CD8α+ DC subset and reduced DC activation and production of IFN-ß and IL-12. Consequently, CCR4-/- mice presented decreased IFN-γ-producing CD4+ and CD8+ T cells, an increased viral load and more severe pancreatitis. In addition, CCR4-/- mice had impaired Treg accumulation in pLN as well as increased T lymphocyte activation. Adoptive transfer of CCR4+ Tregs but not CCR4- Tregs was able to regulate T lymphocyte activation upon CVB5 infection. The present data reveal a previously unknown role for CCR4 in coordinating immune cell migration to CVB-infected tissues and in controlling subsequent pancreatitis. These new insights may contribute to the design of future therapies for acute and chronic infection of non-polio enteroviruses.


Assuntos
Infecções por Coxsackievirus/complicações , Células Dendríticas/imunologia , Enterovirus Humano B/imunologia , Pancreatite/virologia , Receptores CCR4/imunologia , Linfócitos T Reguladores/imunologia , Animais , Movimento Celular , Quimiocina CCL17/imunologia , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/patologia , Células Dendríticas/patologia , Camundongos Endogâmicos C57BL , Pancreatite/etiologia , Pancreatite/imunologia , Pancreatite/patologia , Linfócitos T Reguladores/patologia
15.
Nat Commun ; 9(1): 1513, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666415

RESUMO

Chagas disease is caused by infection with the protozoan Trypanosoma cruzi (T. cruzi) and is an important cause of severe inflammatory heart disease. However, the mechanisms driving Chagas disease cardiomyopathy have not been completely elucidated. Here, we show that the canonical PI3Kγ pathway is upregulated in both human chagasic hearts and hearts of acutely infected mice. PI3Kγ-deficient mice and mutant mice carrying catalytically inactive PI3Kγ are more susceptible to T. cruzi infection. The canonical PI3Kγ signaling in myeloid cells is essential to restrict T. cruzi heart parasitism and ultimately to avoid myocarditis, heart damage, and death of mice. Furthermore, high PIK3CG expression correlates with low parasitism in human Chagas' hearts. In conclusion, these results indicate an essential role of the canonical PI3Kγ signaling pathway in the control of T. cruzi infection, providing further insight into the molecular mechanisms involved in the pathophysiology of chagasic heart disease.


Assuntos
Cardiomiopatia Chagásica/imunologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/imunologia , Trypanosoma cruzi/imunologia , Adulto , Animais , Biópsia , Linhagem Celular , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Feminino , Coração/parasitologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinoxalinas/farmacologia , Tiazolidinedionas/farmacologia , Trypanosoma cruzi/patogenicidade , Regulação para Cima
16.
Front Immunol ; 8: 1213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033934

RESUMO

The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we describe a novel regulatory mechanism where Ebi3 dampens cardiac inflammation by modulating the overproduction of IFN-γ, the bona fide culprit of Chagas disease cardiomyopathy.

17.
PLoS One ; 12(10): e0185819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973047

RESUMO

Type B coxsackievirus (CVB) is a common cause of acute and chronic myocarditis, meningitis and pancreatitis, often leading to heart failure and pancreatic deficiency. The polarization of CD4+ T lymphocytes and their cytokine milieu are key factors in the outcome of CVB-induced diseases. Thus, sensing the virus and driving the adaptive immune response are essential for the establishment of a protective immune response. TLR3 is a crucial virus recognition receptor that confers the host with resistance to CVB infection. In the current study, we found that TLR3 expression in dendritic cells plays a role in their activation upon CVB3 infection in vitro, as TLR3-deficient dendritic cells up-regulate CD80 and CD86 to a less degree than WT cells. Instead, they up-regulated the inhibitory molecule PD-L1 and secreted considerably lower levels of TNF-α and IL-10 and a higher level of IL-23. T lymphocyte proliferation in co-culture with CVB3-infected dendritic cells was increased by TLR3-expressing DCs and other cells. Furthermore, in the absence of TLR3, the T lymphocyte response was shifted toward a Th17 profile, which was previously reported to be deleterious for the host. TLR3-deficient mice were very susceptible to CVB3 infection, with increased pancreatic injury and extensive inflammatory infiltrate in the heart that was associated with uncontrolled viral replication. Adoptive transfer of TLR3+ dendritic cells slightly improved the survival of TLR-deficient mice following CVB3 infection. Therefore, our findings highlight the importance of TLR3 signaling in DCs and in other cells to induce activation and polarization of the CD4+ T lymphocyte response toward a Th1 profile and consequently for a better outcome of CVB3 infection. These data provide new insight into the immune-mediated mechanisms by which CVBs are recognized and cleared in order to prevent the development of myocarditis and pancreatitis and may contribute to the design of therapies for enteroviral infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Coxsackievirus/imunologia , Células Dendríticas/imunologia , Enterovirus Humano B , Ativação Linfocitária/fisiologia , Receptor 3 Toll-Like/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/metabolismo , Infecções por Coxsackievirus/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Camundongos , Camundongos Knockout
18.
J Med Virol ; 89(6): 1108-1111, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27787907

RESUMO

Oropouche virus (OROV) is a frequent cause of arboviral febrile disease in the Amazon. The present report describes studies done in two patients, one of them; the first OROV human case acquired outside of the Amazon, which have revealed for the first time the presence of OROV in peripheral blood leukocytes. This novel finding raises important issues regarding pathogenesis of human infections and may offer a new tool, for the rapid diagnosis of this neglected infection. J. Med. Virol. 89:1108-1111, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Infecções por Bunyaviridae/virologia , Leucócitos/virologia , Orthobunyavirus/isolamento & purificação , Adolescente , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
J Virol ; 90(1): 189-205, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468541

RESUMO

UNLABELLED: Interferon (IFN)-regulatory factor 5 (IRF-5) is a transcription factor that induces inflammatory responses after engagement and signaling by pattern recognition receptors. To define the role of IRF-5 during bunyavirus infection, we evaluated Oropouche virus (OROV) and La Crosse virus (LACV) pathogenesis and immune responses in primary cells and in mice with gene deletions in Irf3, Irf5, and Irf7 or in Irf5 alone. Deletion of Irf3, Irf5, and Irf7 together resulted in uncontrolled viral replication in the liver and spleen, hypercytokinemia, extensive liver injury, and an early-death phenotype. Remarkably, deletion of Irf5 alone resulted in meningoencephalitis and death on a more protracted timeline, 1 to 2 weeks after initial OROV or LACV infection. The clinical signs in OROV-infected Irf5(-/-) mice were associated with abundant viral antigen and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in several regions of the brain. Circulating dendritic cell (DC) subsets in Irf5(-/-) mice had higher levels of OROV RNA in vivo yet produced lower levels of type I IFN than wild-type (WT) cells. This result was supported by data obtained in vitro, since a deficiency of IRF-5 resulted in enhanced OROV infection and diminished type I IFN production in bone marrow-derived DCs. Collectively, these results indicate a key role for IRF-5 in modulating the host antiviral response in peripheral organs that controls bunyavirus neuroinvasion in mice. IMPORTANCE: Oropouche virus (OROV) and La Crosse virus (LACV) are orthobunyaviruses that are transmitted by insects and cause meningitis and encephalitis in subsets of individuals in the Americas. Recently, we demonstrated that components of the type I interferon (IFN) induction pathway, particularly the regulatory transcription factors IRF-3 and IRF-7, have key protective roles during OROV infection. However, the lethality in Irf3(-/-) Irf7(-/-) (DKO) mice infected with OROV was not as rapid or complete as observed in Ifnar(-/-) mice, indicating that other transcriptional factors associated with an IFN response contribute to antiviral immunity against OROV. Here, we evaluated bunyavirus replication, tissue tropism, and cytokine production in primary cells and mice lacking IRF-5. We demonstrate an important role for IRF-5 in preventing neuroinvasion and the ensuing encephalitis caused by OROV and LACV.


Assuntos
Infecções por Bunyaviridae/imunologia , Sistema Nervoso Central/virologia , Interações Hospedeiro-Patógeno , Fatores Reguladores de Interferon/metabolismo , Orthobunyavirus/imunologia , Transdução de Sinais , Animais , Apoptose , Encéfalo/patologia , Encéfalo/virologia , Células Cultivadas , Células Dendríticas/virologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Interferon Tipo I/metabolismo , Fígado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Orthobunyavirus/fisiologia , Baço/virologia , Análise de Sobrevida , Replicação Viral
20.
J Neuroimmunol ; 290: 9-14, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26711562

RESUMO

We aimed to evaluate the effect of paradoxical sleep deprivation on the cellular migration during inflammation, the peritoneal macrophage phenotype and the infectious stimulus outcomes. A/J mice were inoculated with thioglycollate and exposed to paradoxical sleep deprivation. Sleep-deprived animals presented decreased cell migration compared to controls. Nitric oxide production was reduced in macrophages from sleep-deprived mice compared to controls. Cell surface analysis showed that sleep deprivation reduced F4/80(+)/CD80(low) peritoneal cell population induced by thioglycollate injection. Sleep-deprived mice were not more susceptible to infection than control mice. Our findings challenge the general perception that sleep loss always increases infection susceptibility.


Assuntos
Movimento Celular/imunologia , Macrófagos Peritoneais/imunologia , Privação do Sono/imunologia , Animais , Corticosterona/sangue , Corticosterona/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Privação do Sono/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA