Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Microbes Infect ; 26(3): 105282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38135025

RESUMO

Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPß to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.


Assuntos
Mycobacterium tuberculosis , Humanos , Animais , Camundongos , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Macrófagos/microbiologia , Interleucina-12 , Isoformas de Proteínas/metabolismo
2.
Eur J Med Chem ; 257: 115524, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290183

RESUMO

Towards identification of novel therapeutic candidates, a series of quinazolinone-based acetamide derivatives were synthesized and assessed for their anti-leishmanial efficacy. Amongst synthesized derivatives, compounds F12, F27 and F30 demonstrated remarkable activity towards intracellular L. donovani amastigotes in vitro, with IC50 values of 5.76 ± 0.84 µM, 3.39 ± 0.85 µM and 8.26 ± 1.23 µM against promastigotes, and 6.02 µM ± 0.52, 3.55 ± 0.22 µM and 6.23 ± 0.13 µM against amastigotes, respectively. Oral administration of compounds F12 and F27 entailed >85% reduction in organ parasite burden in L. donovani-infected BALB/c mice and hamsters, by promoting host-protective Th1 cytokine response. In host J774 macrophages, mechanistic studies revealed inhibition of PI3K/Akt/CREB axis, resulting in a decrease of IL-10 versus IL-12 release upon F27 treatment. In silico docking studies conducted with lead compound, F27 demonstrated plausible inhibition of Leishmania prolyl-tRNA synthetase, which was validated via detection of decreased proline levels in parasites and induction of amino acid starvation, leading to G1 cell cycle arrest and autophagy-mediated programmed cell death of L. donovani promastigotes. Structure-activity analysis and study of pharmacokinetic and physicochemical parameters suggest oral availability and underscore F27 as a promising lead for anti-leishmanial drug development.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Cricetinae , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Quinazolinonas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Acetamidas/metabolismo , Camundongos Endogâmicos BALB C
3.
Int Rev Immunol ; 42(3): 217-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35275772

RESUMO

Leishmaniasis is an exemplary paradigm of immune evasion, fraught with the perils of limited clinical assistance, escalating costs of treatment and made worse with the lack of suitable vaccine. While drugs remain central to large-scale disease control, the growing emergence of parasite resistance necessitates the need for combination therapy involving host-directed immunological agents. Also, since prolonged disease progression is associated with strong immune suppression of the host, augmentation of host immunity via restoration of the immunoregulatory circuit involving antigen-presenting cells and T-cells, activation of macrophage function and/or CD4+ T helper 1 cell differentiation may serve as an ideal approach to resolve severe cases of leishmaniasis. As such, therapies that embody a synergistic approach that involve direct killing of the parasite in addition to elevating host immunity are likely to pave the way for widespread elimination of leishmaniasis in the future. With this review, we aim to recapitulate the various immunotherapeutic agents found to hold promise in antileishmanial treatment both in vitro and in vivo. These include parasite-specific antigens, dendritic cell-targeted therapy, recombinant inhibitors of various components intrinsic to immune cell signaling and agonists or antagonists to immune cells and cytokines. We also summarize their abilities to direct therapeutic skewing of the host cell-immune response and review their potential to combat the disease either alone, or as adjunct modalities.


Assuntos
Antiprotozoários , Leishmaniose , Humanos , Frutas , Citocinas , Leishmaniose/tratamento farmacológico , Imunidade Celular , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Fatores Imunológicos/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-36475314

RESUMO

OBJECTIVES: Previously, a series of side chain-modified quinolinyl ß-enaminones was identified to possess significant activity against chloroquine-sensitive or -resistant Plasmodium falciparum and Brugia malayi microfilariae. The present study evaluates in vitro and in vivo activity of the series against Leishmania donovani and reports their mode of action. METHODS: The in vitro activity of 15 quinolinyl ß-enaminone derivatives against Leishmania promastigotes and amastigotes was assessed by luciferase assay. The reduction of organ parasite burden was assessed by Giemsa staining in L. donovani-infected BALB/c mice and hamsters. Intracellular Ca2+ and ATP level in active derivative (3D)-treated promastigotes were determined by fluorescence and luminescence assays. Flow cytometry was performed to determine loss of mitochondrial membrane potential (MMP) using JC-1 dye, reactive oxygen species (ROS) generation using 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dye, phosphatidylserine externalization by Annexin V-FITC staining and cell-cycle arrest by propidium iodide (PI) staining. RESULTS: Compounds 3A, 3B and 3D showed significant in vitro efficacy against L. donovani with IC50 < 6 µM and mild cytotoxicity (∼75% viability) at 25 µM on J774 macrophages. 3A and 3D at 50 mg/kg and 100 mg/kg reduced parasite burden (>84%) in infected mice and hamsters, respectively, whereas 3D-treated animals demonstrated maximum parasite burden reduction without organ toxicity. Mode-of-action analysis revealed that 3D induced apoptosis by inhibiting mitochondrial complex II, reducing MMP and ATP levels, increasing ROS and Ca2+ levels, ultimately triggering phosphatidylserine externalization and sub-G0/G1 cell-cycle arrest in promastigotes. CONCLUSIONS: Compound 3D-mediated inhibition of L. donovani mitochondrial complex induces apoptosis, making it a promising therapeutic candidate for visceral leishmaniasis.

5.
Subcell Biochem ; 100: 581-616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301507

RESUMO

The interaction between metabolic and epigenetic events shapes metabolic adaptations of cancer cells and also helps rewire the proliferation and activity of surrounding immune cells in the tumor microenvironment (TME). Recent studies indicate that the TME imposes metabolic constraints on immune cells, inducing them to attain a tolerogenic state, incompetent of mounting effective tumor eradication. Owing to extensive mutations acquired over repeated cell divisions, tumor cells selectively accumulate metabolites that regulate the activity of key epigenetic enzymes to mediate activation/suppression of genes associated with T-cell function and macrophage polarization. Further, multiple modulators connecting epigenetic and metabolic pathways help dictate the preferential induction of cytokines and expression of lineage-specifying genes associated with immunosuppressive T-cell differentiation.In this chapter, we attempt to discuss the mechanisms underpinning the metabolic and epigenetic interplay in immune cells of the TME and how modulating these events can boost the application of existing anticancer immunotherapy.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/metabolismo , Epigenômica
6.
RSC Med Chem ; 13(6): 746-760, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35814931

RESUMO

A series of uniquely functionalized 2,3,-dihydro-1H-pyyrolo[3,4-b]quinolin-1-one derivatives were synthesized in one to two steps by utilizing a post-Ugi modification strategy and were evaluated for antileishmanial efficacy against visceral leishmaniasis (VL). Among the library compounds, compound 5m exhibited potential in vitro antileishmanial activity (CC50 = 65.11 µM, SI = 7.79, anti-amastigote IC50 = 8.36 µM). In vivo antileishmanial evaluation of 5m demonstrated 56.2% inhibition in liver and 61.1% inhibition in spleen parasite burden in infected Balb/c mice (12.5 mg kg-1, i.p.). In vitro pharmacokinetic study ascertained the stability of 5m in both simulated gastric fluid and simulated intestinal fluid. All the active compounds passed the PAINS filter and showed no toxicity in in silico predictions.

7.
Comput Biol Med ; 146: 105419, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483225

RESUMO

Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging from tracking viral evolution to understanding the vaccine effectiveness. Asymptomatic breakthrough infections have been a major problem in assessing vaccine effectiveness in populations globally. Serological discrimination of vaccine response from infection has so far been limited to Spike protein vaccines since whole virion vaccines generate antibodies against all the viral proteins. Here, we show how a statistical and machine learning (ML) based approach can be used to discriminate between SARS-CoV-2 infection and immune response to an inactivated whole virion vaccine (BBV152, Covaxin). For this, we assessed serial data on antibodies against Spike and Nucleocapsid antigens, along with age, sex, number of doses taken, and days since last dose, for 1823 Covaxin recipients. An ensemble ML model, incorporating a consensus clustering approach alongside the support vector machine model, was built on 1063 samples where reliable qualifying data existed, and then applied to the entire dataset. Of 1448 self-reported negative subjects, our ensemble ML model classified 724 to be infected. For method validation, we determined the relative ability of a random subset of samples to neutralize Delta versus wild-type strain using a surrogate neutralization assay. We worked on the premise that antibodies generated by a whole virion vaccine would neutralize wild type more efficiently than delta strain. In 100 of 156 samples, where ML prediction differed from self-reported uninfected status, neutralization against Delta strain was more effective, indicating infection. We found 71.8% subjects predicted to be infected during the surge, which is concordant with the percentage of sequences classified as Delta (75.6%-80.2%) over the same period. Our approach will help in real-world vaccine effectiveness assessments where whole virion vaccines are commonly used.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , Aprendizado de Máquina , Pandemias , SARS-CoV-2 , Vacinas de Produtos Inativados , Vírion
8.
Eur J Med Chem ; 221: 113516, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992928

RESUMO

The current therapeutic regimen for visceral leishmaniasis is inadequate and unsatisfactory due to toxic side effects, high cost and emergence of drug resistance. Alternative, safe and affordable antileishmanials are, therefore, urgently needed and toward these we synthesized a series of arylpiperazine substituted pyranone derivatives and screened them against both in vitro and in vivo model of visceral leishmaniasis. Among 22 synthesized compounds, 5a and 5g showed better activity against intracellular amastigotes with an IC50 of 11.07 µM and 15.3 µM, respectively. In the in vivo, 5a significantly reduced hepatic and splenic amastigotes burden in Balb/c mice model of visceral leishmaniasis. On a mechanistic node, we observed that 5a induced direct Leishmania killing via mitochondrial dysfunction like cytochrome c release and loss of membrane potential. Taken together, our results suggest that 5a is a promising lead for further development of antileishmanial drugs.


Assuntos
Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania donovani/efeitos dos fármacos , Piperazina/farmacologia , Piridonas/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperazina/química , Piridonas/química , Relação Estrutura-Atividade
9.
J Cell Sci ; 134(5)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589499

RESUMO

Notch signaling governs crucial aspects of intercellular communication spanning antigen-presenting cells and T-cells. In this study, we investigate how Leishmaniadonovani takes advantage of this pathway to quell host immune responses. We report induction of the Notch ligand Jagged1 in L. donovani-infected bone marrow macrophages (BMMϕs) and subsequent activation of RBPJκ (also known as RBPJ) in T cells, which in turn upregulates the transcription factor GATA3. Activated RBPJκ also associates with the histone acetyltransferase p300 (also known as EP300), which binds with the Bcl2l12 promoter and enhances its expression. Interaction of Bcl2L12 with GATA3 in CD4+ T cells facilitates its binding to the interleukin (IL)-10 and IL-4 promoters, thereby increasing the secretion of these cytokines. Silencing Jagged1 hindered these events in a BMMϕ-T cell co-culture system. Upon further scrutiny, we found that parasite lipophosphoglycan (LPG) induces the host phosphoinositide 3-kinase (PI3K)/Akt pathway, which activates ß-catenin and Egr1, the two transcription factors responsible for driving Jagged1 expression. In vivo morpholino-silencing of Jagged1 suppresses anti-inflammatory cytokine responses and reduces organ parasite burden in L. donovani-infected Balb/c mice, suggesting that L. donovani-induced host Jagged1-Notch signaling skews macrophage-T cell crosstalk into disease-promoting Th2 mode in experimental visceral leishmaniasis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Anti-Inflamatórios , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases
10.
BMC Bioinformatics ; 18(1): 224, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454513

RESUMO

BACKGROUND: Myc is an essential gene having multiple functions such as in cell growth, differentiation, apoptosis, genomic stability, angiogenesis, and disease biology. A large number of researchers dedicated to Myc biology are generating a substantial amount of data in normal and cancer cells/tissues including Burkitt's lymphoma and ovarian cancer. RESULTS: MYCbase ( http://bicresources.jcbose.ac.in/ssaha4/mycbase ) is a collection of experimentally supported functional sites in Myc that can influence the biological cellular processes. The functional sites were compiled according to their role which includes mutation, methylation pattern, post-translational modifications, protein-protein interactions (PPIs), and DNA interactions. In addition, biochemical properties of Myc are also compiled, which includes metabolism/pathway, protein abundance, and modulators of protein-protein interactions. The OMICS data related to Myc- like gene expression, proteomics expression using mass-spectrometry and miRNAs targeting Myc were also compiled in MYCbase. The mutation and pathway data from the MYCbase were analyzed to look at the patterns and distributions across different diseases. There were few proteins/genes found common in Myc-protein interactions and Myc-DNA binding, and these can play a significant role in transcriptional feedback loops. CONCLUSION: In this report, we present a comprehensive integration of relevant information regarding Myc in the form of MYCbase. The data compiled in MYCbase provides a reliable data resource for functional sites at the residue level and biochemical properties of Myc in various cancers.


Assuntos
Bases de Dados de Proteínas , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Neoplasias da Mama/genética , Proliferação de Células , Humanos , Camundongos , MicroRNAs/genética , Mutação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA