Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Thromb Haemost ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306095

RESUMO

BACKGROUND: Patients with metabolic dysfunction-associated steatohepatitis (MASH) are at an increased risk of developing venous thromboembolic events, including deep vein thrombosis (DVT). To date, the study of DVT in MASH has been hampered by the lack of reliable models that mimic the pathologic aspects of human disease. OBJECTIVES: To evaluate DVT severity and hypercoagulability in murine and human MASH. METHODS: Transcriptional changes in the liver, plasma markers of coagulation, and DVT severity were evaluated in mice fed a standard chow diet or a high-fructose, high-fat, and high-cholesterol MASH diet for 24 weeks. Plasma analyses of coagulation markers and thrombin generation assays were performed in a well-characterized cohort of patients with or without MASH. RESULTS: Mice fed the MASH diet developed steatohepatitis and fibrosis, mimicking human MASH. Liver RNA sequencing revealed a significant upregulation of pathways related to inflammation and coagulation concomitant with increased levels of plasma coagulation markers including increased prothrombin fragment 1+2, thrombin-antithrombin complex, plasminogen activator inhibitor-1 levels, and endothelin 1. MASH exacerbated DVT severity in mice, as evidenced by increased thrombus weight and higher thrombosis incidence (15/15 vs 11/15 in controls, P = .0317). Higher endothelin 1 release and increased apoptosis were found in endothelial cells stimulated with supernatants of palmitate-stimulated HepG2 cells. Patients with MASH exhibited increased levels of plasma coagulation markers and delayed thrombin generation. CONCLUSION: We report enhanced DVT severity and hypercoagulability, both in murine and human MASH. Our model of MASH-DVT can facilitate a better understanding of the fundamental mechanisms leading to increased venous thromboembolic events in patients with MASH.

2.
Analyst ; 149(13): 3661-3672, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38819086

RESUMO

Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated. In this study, two in vitro microfluidic models for culturing ECs are proposed to reproduce blood pressure (BP) and wall shear stress (WSS) on the arterial endothelium while using these medical devices. The layout and parameters of the two microfluidic systems were optimized based on the principle of hemodynamic similarity to efficiently simulate physiological conditions. Moreover, the unique design of the double-pump and double afterload systems could successfully reproduce the working mode of CPDs in an in vitro microfluidic system. The performance of the two systems was verified by numerical simulations and in vitro experiments. BP and WSS under HF, CFVAD in pulsatile modes, and CPD were reproduced accurately in the systems, and these induced signals improved the expression of Ca2+, NO, and reactive oxygen species in ECs, proving that CPD may be effective in normalizing endothelial function and replacing CFVAD to a certain extent to treat non-severe HF. This method offers an important tool for the study of cell mechanobiology and a key experimental basis for exploring the potential value of mechanical circulatory support devices in reducing adverse events and improving outcomes in the treatment of HF in the future.


Assuntos
Coração Auxiliar , Fluxo Pulsátil , Humanos , Células Endoteliais/citologia , Espécies Reativas de Oxigênio/metabolismo , Dispositivos Lab-On-A-Chip , Estresse Mecânico , Células Endoteliais da Veia Umbilical Humana , Contrapulsação/instrumentação , Contrapulsação/métodos , Óxido Nítrico/metabolismo
4.
Lab Chip ; 24(9): 2428-2439, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625094

RESUMO

Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.


Assuntos
Técnicas de Cultura de Células , Fluxo Pulsátil , Humanos , Técnicas de Cultura de Células/instrumentação , Hemodinâmica , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Coração Auxiliar , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Células Cultivadas
6.
Comput Biol Med ; 169: 107788, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091724

RESUMO

Continuous flow (CF) left ventricular assist devices (LVAD) operate at a constant speed mode, which could result in increased risk of adverse events due to reduced vascular pulsatility. Consequently, pump speed modulation algorithms have been proposed to augment vascular pulsatility. However, the quantitative local hemodynamic effects on the aorta when the pump is operating with speed modulation using different types of CF-LVADs are still under investigation. The computational fluid dynamics (CFD) study was conducted to quantitatively elucidate the hemodynamic effects on a clinical patient-specific aortic model under different speed patterns of CF-LVADs. Pressure distribution, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and velocity were calculated to compare their differences at constant and pulsatile speeds under centrifugal and axial LVAD support. Results showed that pulse pressure on the aorta was significantly larger under pulsatile speed mode than that under constant speed mode for both CF-LVADs, indicating enhanced aorta pulsatility, as well as the higher peak blood flow velocity on some representative slices of aorta. Pulsatile speed modulation enhanced peak WSS compared to constant speed; high TAWSS region appeared near the branch of left common carotid artery and distal aorta regardless of speed modes and CF-LVADs but these regions also had low OSI; RRT was almost the same for all the cases. This study may provide a basis for the scientific and reasonable selection of the pulsatile speed patterns of CF-LVADs for treating heart failure patients.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Fluxo Pulsátil/fisiologia , Hemodinâmica/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-36936779

RESUMO

Continuous flow rotary blood pumps (RBP) operating clinically at constant rotational speeds cannot match cardiac demand during varying physical activities, are susceptible to suction, diminish vascular pulsatility, and have an increased risk of adverse events. A sensorless, physiologic feedback control strategy for RBP was developed to mitigate these limitations. The proposed algorithm used intrinsic pump speed to obtain differential pump speed (ΔRPM). The proposed gain-scheduled proportional-integral controller, switching of setpoints between a higher pump speed differential setpoint (ΔRPM Hr ) and a lower pump speed differential setpoint (ΔRPM Lr ), generated pulsatility and physiologic perfusion, while avoiding suction. The switching between ΔRPM Hr and ΔRPM Lr setpoints occurred when the measured ΔRPM reached the pump differential reference setpoint. In-silico tests were implemented to assess the proposed algorithm during rest, exercise, a rapid 3-fold pulmonary vascular resistance increase, rapid change from exercise to rest, and compared with maintaining a constant pump speed setpoint. The proposed control algorithm augmented aortic pressure pulsatility to over 35 mmHg during rest and around 30 mmHg during exercise. Significantly, ventricular suction was avoided, and adequate cardiac output was maintained under all simulated conditions. The performance of the sensorless algorithm using estimation was similar to the performance of sensor-based method. This study demonstrated that augmentation of vascular pulsatility was feasible while avoiding ventricular suction and providing physiological pump outflows. Augmentation of vascular pulsatility can minimize adverse events that have been associated with diminished pulsatility. Mock circulation and animal studies would be conducted to validate these results.

8.
ASAIO J ; 69(6): 569-575, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37000917

RESUMO

Nonsurgical bleeding occurs in a significant proportion of patients implanted with continuous-flow ventricular assist devices (CF-VADs) and is associated with nonphysiologic flow with diminished pulsatility. An in vitro vascular pulse perfusion model seeded with adult human aortic endothelial cells (HAECs) was used to identify biomarkers sensitive to changes in pulsatility. Diminished pulsatility resulted in an ~45% decrease in von Willebrand factor (vWF) levels from 9.80 to 5.32 ng/ml (n = 5, p < 0.05) and a threefold increase in angiopoietin-2 (ANGPT-2) levels from 775.29 to 2471.93 pg/ml (n = 5, p < 0.05) in cultured HAECs. These changes are in agreement with evaluation of patient blood samples obtained pre-CF-VAD implant and 30-day postimplant: a decrease in plasma vWF level by 50% from ~45.59 to ~22.49 µg/ml (n = 15, p < 0.01) and a 64% increase in plasma ANGPT-2 level from 7,073 to 11,615 pg/ml (n = 8, p < 0.05). This study identified vWF and ANGPT-2 as highly sensitive to changes in pulsatility, in addition to interleukin-6 (IL-6), IL-8, and tumor necrosis-α (TNF-α). These biomarkers may help determine the optimal level of pulsatility and help identify patients at high risk of nonsurgical bleeding.


Assuntos
Coração Auxiliar , Doenças de von Willebrand , Adulto , Humanos , Fator de von Willebrand , Células Endoteliais , Coração Auxiliar/efeitos adversos , Angiopoietina-2 , Hemorragia/etiologia , Biomarcadores , Doenças de von Willebrand/etiologia
9.
Front Bioeng Biotechnol ; 11: 1101622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873372

RESUMO

Cardiovascular events are the primary cause of death among dialysis patients. While arteriovenous fistulas (AVFs) are the access of choice for hemodialysis patients, AVF creation can lead to a volume overload (VO) state in the heart. We developed a three-dimensional (3D) cardiac tissue chip (CTC) with tunable pressure and stretch to model the acute hemodynamic changes associated with AVF creation to complement our murine AVF model of VO. In this study, we aimed to replicate the hemodynamics of murine AVF models in vitro and hypothesized that if 3D cardiac tissue constructs were subjected to "volume overload" conditions, they would display fibrosis and key gene expression changes seen in AVF mice. Mice underwent either an AVF or sham procedure and were sacrificed at 28 days. Cardiac tissue constructs composed of h9c2 rat cardiac myoblasts and normal adult human dermal fibroblasts in hydrogel were seeded into devices and exposed to 100 mg/10 mmHg pressure (0.4 s/0.6 s) at 1 Hz for 96 h. Controls were exposed to "normal" stretch and experimental group exposed to "volume overload". RT-PCR and histology were performed on the tissue constructs and mice left ventricles (LVs), and transcriptomics of mice LVs were also performed. Our tissue constructs and mice LV both demonstrated cardiac fibrosis as compared to control tissue constructs and sham-operated mice, respectively. Gene expression studies in our tissue constructs and mice LV demonstrated increased expression of genes associated with extracellular matrix production, oxidative stress, inflammation, and fibrosis in the VO conditions vs. control conditions. Our transcriptomics studies demonstrated activated upstream regulators related to fibrosis, inflammation, and oxidative stress such as collagen type 1 complex, TGFB1, CCR2, and VEGFA and inactivated regulators related to mitochondrial biogenesis in LV from mice AVF. In summary, our CTC model yields similar fibrosis-related histology and gene expression profiles as our murine AVF model. Thus, the CTC could potentially play a critical role in understanding cardiac pathobiology of VO states similar to what is present after AVF creation and may prove useful in evaluating therapies.

10.
Artif Organs ; 47(4): 640-648, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36404709

RESUMO

BACKGROUND: Patients on continuous flow ventricular assist devices (CF-VADs) are at high risk for the development of Acquired von-Willebrand Syndrome (AVWS) and non-surgical bleeding. von Willebrand Factor (vWF) plays an essential role in maintaining hemostasis via platelet binding to the damaged endothelium to facilitate coagulation. In CF-VAD patients, degradation of vWF into low MW multimers that are inefficient in facilitating coagulation occurs and has been primarily attributed to the supraphysiological shear stress associated with the CF-VAD impeller. METHODS: In this review, we evaluate information from the literature regarding the unraveling behavior of surface-immobilized vWF under pulsatile and continuous flow pertaining to: (A) the process of arterial endothelial vWF production and release into circulation, (B) the critical shear stress required to unravel surface bound versus soluble vWF which leads to degradation, and (C) the role of pulsatility in on the production and degradation of vWF. RESULTS AND CONCLUSION: Taken together, these data suggests that the loss of pulsatility and its impact on arterial endothelial cells plays an important role in the production, release, unraveling, and proteolytic degradation of vWF into low MW multimers, contributing to the development of AVWS. Restoration of pulsatility can potentially mitigate this issue by preventing AVWS and minimizing the risk of non-surgical bleeding.


Assuntos
Coração Auxiliar , Doenças de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Coração Auxiliar/efeitos adversos , Células Endoteliais/metabolismo , Hemorragia , Endotélio/metabolismo
11.
Cells Tissues Organs ; 212(3): 272-284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35344966

RESUMO

Continuous flow ventricular assist device (CFVAD) support in advanced heart failure patients causes diminished pulsatility, which has been associated with adverse events including gastrointestinal bleeding, end organ failure, and arteriovenous malformation. Recently, pulsatility augmentation by pump speed modulation has been proposed as a means to minimize adverse events. Pulsatility primarily affects endothelial and smooth muscle cells in the vasculature. To study the effects of pulsatility and pulse modulation using CFVADs, we have developed a microfluidic co-culture model with human aortic endothelial (ECs) and smooth muscle cells (SMCs) that can replicate physiologic pressures, flows, shear stresses, and cyclical stretch. The effects of pulsatility and pulse frequency on ECs and SMCs were evaluated during (1) normal pulsatile flow (120/80 mmHg, 60 bpm), (2) diminished pulsatility (98/92 mmHg, 60 bpm), and (3) low cyclical frequency (115/80 mmHg, 30 bpm). Shear stresses were estimated using computational fluid dynamics (CFD) simulations. While average shear stresses (4.2 dynes/cm2) and flows (10.1 mL/min) were similar, the peak shear stresses for normal pulsatile flow (16.9 dynes/cm2) and low cyclic frequency (19.5 dynes/cm2) were higher compared to diminished pulsatility (6.45 dynes/cm2). ECs and SMCs demonstrated significantly lower cell size with diminished pulsatility compared to normal pulsatile flow. Low cyclical frequency resulted in normalization of EC cell size but not SMCs. SMCs size was higher with low frequency condition compared to diminished pulsatility but did not normalize to normal pulsatility condition. These results may suggest that pressure amplitude augmentation may have a greater effect in normalizing ECs, while both pressure amplitude and frequency may be required to normalize SMCs morphology. The co-culture model may be an ideal platform to study flow modulation strategies.


Assuntos
Coração Auxiliar , Humanos , Técnicas de Cocultura , Miócitos de Músculo Liso
12.
Cells Tissues Organs ; 212(4): 352-362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35640546

RESUMO

The heart is a dynamic organ, and the cardiac tissue experiences changes in pressure and stretch during the cardiac cycle. Existing cell culture and animal models are limited in their capacity to decouple and tune specific hemodynamic stresses implicated in the development of physiological and pathophysiological cardiac tissue remodeling. This study focused on creating a system to subject engineered cardiac tissue to either pressure or stretch stimuli in isolation and the subsequent evaluation of acute tissue remodeling. We developed a cardiac tissue chip containing three-dimensional (3-D) cell-laden hydrogel constructs and cultured them within systems where we could expose them to either pressure changes or volume changes as seen in the left ventricle. Acute cellular remodeling with each condition was qualitatively and quantitatively assessed using histology, immunohistochemistry, gene expression studies, and soluble factor analysis. Using our unique model system, we isolated the effects of pressure and stretch on engineered cardiac tissue. Our results confirm that both pressure and stretch mediate acute stress responses in the engineered cardiac tissue. However, both experimental conditions elicited a similar acute phase injury response within this timeframe. This study demonstrates our ability to subject engineered cardiac tissue to either pressure or stretch stimuli in isolation, both of which elicited acute tissue remodeling responses.


Assuntos
Coração , Engenharia Tecidual , Animais , Engenharia Tecidual/métodos , Técnicas de Cultura de Células
13.
Biomed Mater ; 17(6)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099909

RESUMO

Small-diameter arterial conduits with native physiological and biological equivalence continues to be a constant global demand posing critical challenges in fabrication. Advent of various strategies towards mimicking the structural hierarchy of a native blood vessel, often involve complex instrumentation and template-assistance with post-processing complications eventually compromising structural fidelity. In the present research, we report a template-free, facile strategy- '3D wet writing' by peripheral-core differential ionic gelation to fabricate perfusable customizable constructs of any dimension, thickness and length in <5 mins. Dual-crosslinking using di-diol complexation of borax with Alginate- poly (vinyl alcohol) was performed to enhance the stability of fabricated bi-layered tubular constructs (BLT). These fabricated BLTs demonstrated non-linear mechanical characteristics of native blood vessels in withstanding physiological (120/80 mmHg) hemodynamic loading conditions with cyclic strain (5.82 ± 0.88%). The BLTs also ensured adequate longitudinal (0.176 ± 0.03 MPa) & circumferential (0.29 ± 0.012 MPa) tensile strength and burst pressure strength of 353.875 ± 22.69 mmHg. Hemocompatible characteristics of BLT were clearly evident with lower hemolytic index (0.21 ± 0.03%) and maintenance of erythrocyte structural integrity under dynamic conditions. Further, non-thrombogenic and non-inflammatory characteristics of BLTs were confirmed by in-activated platelets and monocytes under dynamic conditions. The developed wet-writing technique exhibited facile integration of layer-specific cells concurrently with the BLT fabrication. The spatial cell-specific expressions of smooth muscle (α-SMA) and endothelial (CD-31) cells in BLT were comparable to native hierarchical cellular organization with the multi-layered medial and mono-layered intimal layers. Further,ex-vivodynamic studies on anastomotic interface between BLT and rat abdominal aorta clearly evidenced the functional efficacy of fabricated BLTs as physiologically relevant small-diameter vascular construct.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alginatos , Animais , Biomimética , Hidrogéis , Ratos , Alicerces Teciduais/química
14.
Cells ; 11(13)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35805195

RESUMO

Reperfusion injury after extended ischemia accounts for approximately 50% of myocardial infarct size, and there is no standard therapy. HDAC inhibition reduces infarct size and enhances cardiomyocyte autophagy and PGC1α-mediated mitochondrial biogenesis when administered at the time of reperfusion. Furthermore, a specific autophagy-inducing peptide, Tat-Beclin 1 (TB), reduces infarct size when administered at the time of reperfusion. However, since SAHA affects multiple pathways in addition to inducing autophagy, whether autophagic flux induced by TB maintains mitochondrial homeostasis during ischemia/reperfusion (I/R) injury is unknown. We tested whether the augmentation of autophagic flux by TB has cardioprotection by preserving mitochondrial homeostasis both in vitro and in vivo. Wild-type mice were randomized into two groups: Tat-Scrambled (TS) peptide as the control and TB as the experimental group. Mice were subjected to I/R surgery (45 min coronary ligation, 24 h reperfusion). Autophagic flux, mitochondrial DNA (mtDNA), mitochondrial morphology, and mitochondrial dynamic genes were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were treated with a simulated I/R injury to verify cardiomyocyte specificity. The essential autophagy gene, ATG7, conditional cardiomyocyte-specific knockout (ATG7 cKO) mice, and isolated adult mouse ventricular myocytes (AMVMs) were used to evaluate the dependency of autophagy in adult cardiomyocytes. In NRVMs subjected to I/R, TB increased autophagic flux, mtDNA content, mitochondrial function, reduced reactive oxygen species (ROS), and mtDNA damage. Similarly, in the infarct border zone of the mouse heart, TB induced autophagy, increased mitochondrial size and mtDNA content, and promoted the expression of PGC1α and mitochondrial dynamic genes. Conversely, loss of ATG7 in AMVMs and in the myocardium of ATG7 cKO mice abolished the beneficial effects of TB on mitochondrial homeostasis. Thus, autophagic flux is a sufficient and essential process to mitigate myocardial reperfusion injury by maintaining mitochondrial homeostasis and partly by inducing PGC1α-mediated mitochondrial biogenesis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Autofagia , Proteína Beclina-1/metabolismo , DNA Mitocondrial , Homeostase , Camundongos , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Artif Organs ; 46(5): 887-898, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34866200

RESUMO

BACKGROUND: Patients with continuous flow ventricular assist devices (CF-VADs) are at high risk for non-surgical bleeding, speculated to associate with the loss of pulsatility following CF-VAD placement. It has been hypothesized that continuous shear stress causes elongation and increased enzymatic degradation of von Willebrand Factor (vWF), a key player in thrombus formation at sites of vascular damage. However, the role of loss of pulsatility on the unravelling behavior of vWF has not been widely explored. METHODS: vWF molecules were immobilized on the surface of microfluidic devices and subjected to various pulsatile flow profiles, including continuous flow and pulsatile flow of different magnitudes, dQ/dt (i.e., first derivative of flow rate) of pulsatility and pulse frequencies to mimic in vivo shear flow environments with and without CF-VAD support. VWF elongation was observed using total internal reflection fluorescence (TIRF) microscopy. Besides, the vWF level is measured from the patients' blood sample before and after CF-VAD implantation from a clinical perspective. To our knowledge, this work is the first in providing direct, visual observation of single vWF molecule extension under controlled-pulsatile shear flow. RESULTS: Unravelling of vWF (total sample size n ~ 200 molecules) is significantly reduced under pulsatile flow (p < 0.01) compared to continuous flow. An increase in the magnitude of pulsatility further reduces unravelling lengths, while lower frequency of pulsatility (20 vs. 60 pulses per min) does not have a major effect on the maximum or minimum unravelling lengths. Evaluation of CF-VAD patient blood samples (n = 13) demonstrates that vWF levels decreased by ~40% following CF-VAD placement (p < 0.01), which correlates to single-molecule observations from a clinical point of view. CONCLUSIONS: Pulsatile flow reduces unfolding of vWF compared to continuous flow and a lower pulse frequency of 20 pulses/minute yielded comparable vWF unfolding to 60 pulses/minute. These findings could shed light on non-surgical bleeding associated with the loss of pulsatility following CF-VAD placement.


Assuntos
Coração Auxiliar , Trombose , Coração Auxiliar/efeitos adversos , Hemorragia/etiologia , Humanos , Fluxo Pulsátil , Trombose/etiologia , Fator de von Willebrand/metabolismo
17.
Cells Tissues Organs ; 211(3): 324-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33631743

RESUMO

Cardiopulmonary bypass (CPB) results in short-term (3-5 h) exposure to flow with diminished pulsatility often referred to as "continuous flow". It is unclear if short-term exposure to continuous flow influences endothelial function, particularly, changes in levels of pro-inflammatory and pro-angiogenic cytokines. In this study, we used the endothelial cell culture model (ECCM) to evaluate if short-term (≤5 h) reduction in pulsatility alters levels of pro-inflammatory/pro-angiogenic cytokine levels. Human aortic endothelial cells (HAECs) cultured within the ECCM provide a simple model to evaluate endothelial cell function in the absence of confounding factors. HAECs were maintained under normal pulsatile flow for 24 h and then subjected to continuous flow (diminished pulsatile pressure and flow) as observed during CPB for 5 h. The ECCM replicated pulsatility and flow morphologies associated with normal hemodynamic status and CPB as seen with clinically used roller pumps. Levels of angiopoietin-2 (ANG-2), vascular endothelial growth factor-A (VEGF-A), and hepatocyte growth factor were lower in the continuous flow group in comparison to the pulsatile flow group whereas the levels of endothelin-1 (ET-1), granulocyte colony stimulating factor, interleukin-8 (IL-8) and placental growth factor were higher in the continuous flow group in comparison to the pulsatile flow group. Immunolabelling of HAECs subjected to continuous flow showed a decrease in expression of ANG-2 and VEGF-A surface receptors, tyrosine protein kinase-2 and Fms-related receptor tyrosine kinase-1, respectively. Given that the 5 h exposure to continuous flow is insufficient for transcriptional regulation, it is likely that pro-inflammatory/pro-angiogenic signaling observed was due to signaling molecules stored in Weible-Palade bodies (ET-1, IL-8, ANG-2) and via HAEC binding/uptake of soluble factors in media. These results suggest that even short-term exposure to continuous flow can potentially activate pro-inflammatory/pro-angiogenic signaling in cultured HAECs and pulsatile flow may be a successful strategy in reducing the undesirable sequalae following continuous flow CPB.


Assuntos
Ponte Cardiopulmonar , Células Endoteliais , Ponte Cardiopulmonar/efeitos adversos , Feminino , Humanos , Interleucina-8 , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular
18.
Cells Tissues Organs ; 211(3): 348-359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34365455

RESUMO

Due to the rapidly growing number of older people worldwide and the concomitant increase in cardiovascular complications, there is an urgent need for age-related cardiac disease modeling and drug screening platforms. In the present study, we developed a cardiac tissue chip model that incorporates hemodynamic loading and mimics essential aspects of the infarcted aging heart. We induced cellular senescence in H9c2 myoblasts using low-dose doxorubicin treatment. These senescent cells were then used to engineer cardiac tissue fibers, which were subjected to hemodynamic stresses associated with pressure-volume changes in the heart. Myocardial ischemia was modeled in the engineered cardiac tissue via hypoxic treatment. Our results clearly show that acute low-dose doxorubicin treatment-induced senescence, as evidenced by morphological and molecular markers, including enlarged and flattened nuclei, DNA damage response foci, and increased expression of cell cycle inhibitor p16INK4a, p53, and ROS. Under normal hemodynamic load, the engineered cardiac tissues demonstrated cell alignment and retained cardiac cell characteristics. Our senescent cardiac tissue model of hypoxia-induced myocardial infarction recapitulated the pathological disease hallmarks such as increased cell death and upregulated expression of ANP and BNP. In conclusion, the described methodology provides a novel approach to generate stress-induced aging cardiac cell phenotypes and engineer cardiac tissue chip models to study the cardiovascular disease pathologies associated with aging.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Idoso , Envelhecimento , Doenças Cardiovasculares/complicações , Senescência Celular/genética , Doxorrubicina , Coração , Humanos , Infarto do Miocárdio/patologia
19.
Sensors (Basel) ; 21(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696104

RESUMO

Rotary left ventricular assist devices (LVAD) have emerged as a long-term treatment option for patients with advanced heart failure. LVADs need to maintain sufficient physiological perfusion while avoiding left ventricular myocardial damage due to suction at the LVAD inlet. To achieve these objectives, a control algorithm that utilizes a calculated suction index from measured pump flow (SIMPF) is proposed. This algorithm maintained a reference, user-defined SIMPF value, and was evaluated using an in silico model of the human circulatory system coupled to an axial or mixed flow LVAD with 5-10% uniformly distributed measurement noise added to flow sensors. Efficacy of the SIMPF algorithm was compared to a constant pump speed control strategy currently used clinically, and control algorithms proposed in the literature including differential pump speed control, left ventricular end-diastolic pressure control, mean aortic pressure control, and differential pressure control during (1) rest and exercise states; (2) rapid, eight-fold augmentation of pulmonary vascular resistance for (1); and (3) rapid change in physiologic states between rest and exercise. Maintaining SIMPF simultaneously provided sufficient physiological perfusion and avoided ventricular suction. Performance of the SIMPF algorithm was superior to the compared control strategies for both types of LVAD, demonstrating pump independence of the SIMPF algorithm.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Insuficiência Cardíaca/terapia , Ventrículos do Coração , Humanos , Modelos Cardiovasculares , Sucção
20.
Front Cardiovasc Med ; 8: 737826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485421

RESUMO

Doxorubicin (DOX, an anthracycline) is a widely used chemotherapy agent against various forms of cancer; however, it is also known to induce dose-dependent cardiotoxicity leading to adverse complications. Investigating the underlying molecular mechanisms and strategies to limit DOX-induced cardiotoxicity might have potential clinical implications. Our previous study has shown that expression of microRNA-377 (miR-377) increases in cardiomyocytes (CMs) after cardiac ischemia-reperfusion injury in mice, but its specific role in DOX-induced cardiotoxicity has not been elucidated. In the present study, we investigated the effect of anti-miR-377 on DOX-induced cardiac cell death, remodeling, and dysfunction. We evaluated the role of miR-377 in CM apoptosis, its target analysis by RNA sequencing, and we tested the effect of AAV9-anti-miR-377 on DOX-induced cardiotoxicity and mortality. DOX administration in mice increases miR-377 expression in the myocardium. miR-377 inhibition in cardiomyocyte cell line protects against DOX-induced cell death and oxidative stress. Furthermore, RNA sequencing and Gene Ontology (GO) analysis revealed alterations in a number of cell death/survival genes. Intriguingly, we observed accelerated mortality and enhanced myocardial remodeling in the mice pretreated with AAV9-anti-miR-377 followed by DOX administration as compared to the AAV9-scrambled-control-pretreated mice. Taken together, our data suggest that in vitro miR-377 inhibition protects against DOX-induced cardiomyocyte cell death. On the contrary, in vivo administration of AAV9-anti-miR-377 increases mortality in DOX-treated mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA