Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Circulation ; 149(15): e1067-e1089, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38436070

RESUMO

Nearly 56% of the global population lives in cities, with this number expected to increase to 6.6 billion or >70% of the world's population by 2050. Given that cardiometabolic diseases are the leading causes of morbidity and mortality in people living in urban areas, transforming cities and urban provisioning systems (or urban systems) toward health, equity, and economic productivity can enable the dual attainment of climate and health goals. Seven urban provisioning systems that provide food, energy, mobility-connectivity, housing, green infrastructure, water management, and waste management lie at the core of human health, well-being, and sustainability. These provisioning systems transcend city boundaries (eg, demand for food, water, or energy is met by transboundary supply); thus, transforming the entire system is a larger construct than local urban environments. Poorly designed urban provisioning systems are starkly evident worldwide, resulting in unprecedented exposures to adverse cardiometabolic risk factors, including limited physical activity, lack of access to heart-healthy diets, and reduced access to greenery and beneficial social interactions. Transforming urban systems with a cardiometabolic health-first approach could be accomplished through integrated spatial planning, along with addressing current gaps in key urban provisioning systems. Such an approach will help mitigate undesirable environmental exposures and improve cardiovascular and metabolic health while improving planetary health. The purposes of this American Heart Association policy statement are to present a conceptual framework, summarize the evidence base, and outline policy principles for transforming key urban provisioning systems to heart-health and sustainability outcomes.


Assuntos
American Heart Association , Doenças Cardiovasculares , Humanos , Cidades , Exposição Ambiental , Políticas , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle
2.
Sci Total Environ ; 922: 171161, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387570

RESUMO

This paper presents a remote sensing-based method to efficiently generate multi-temporal landslide inventories and identify recurrent and persistent landslides. We used free data from Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 to 2021. The model successfully delineated >265,000 landslides, accurately identifying 83 % of manually mapped landslide areas and 94 % of reported landslide events in the region. Surprisingly, only 14 % of landslide areas each year were first occurrences, 55-83 % of landslide areas were persistent and 3-24 % had reactivated. On average, a landslide-affected pixel persisted for 4.7 years before recovery, a duration shorter than findings from small-scale studies following a major earthquake event. Among the recovered areas, 50 % of them experienced recurrent landslides after an average of five years. In fact, 22 % of landslide areas in the Himalaya experienced at least three episodes of landslides within 30 years. Disparities in landslide persistence across the Himalaya were pronounced, with an average recovery time of 6 years for Western India and Nepal, compared to 3 years for Bhutan and Eastern India. Slope and elevation emerged as significant controls of persistent and recurrent landslides. Road construction, afforestation policies, and seismic and monsoon activities were related to changes in landslide patterns in the Himalaya.

3.
Science ; 383(6681): 364-367, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271498

RESUMO

Global impacts of cities must be better conveyed to multilateral organizations.

4.
Proc Natl Acad Sci U S A ; 120(52): e2320207120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127981
5.
Proc Natl Acad Sci U S A ; 119(46): e2214813119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343227

RESUMO

Information on urban built-up infrastructure is essential to understand the role of cities in shaping environmental, economic, and social outcomes. The lack of data on built-up heights over large areas has limited our ability to characterize urban infrastructure and its spatial variations across the world. Here, we developed a global atlas of urban built-up heights circa 2015 at 500-m resolution from the Sentinel-1 Ground Range Detected satellite data. Results show extreme gaps in per capita urban built-up infrastructure in the Global South compared with the global average, and even larger gaps compared with the average levels in the Global North. Per capita urban built-up infrastructures in some countries in the Global North are more than 30 times higher than those in the Global South. The results also show that the built-up infrastructure in 45 countries in the Global North combined, with ∼16% of the global population, is roughly equivalent to that of 114 countries in the Global South, with ∼74% of the global population. The inequality in urban built-up infrastructure, as measured by an inequality index, is large in most countries, but the largest in the Global South compared with the Global North. Our analysis reveals the scale of infrastructure demand in the Global South that is required in order to meet sustainable development goals.


Assuntos
Desenvolvimento Sustentável , Cidades
6.
Nat Ecol Evol ; 6(11): 1601-1616, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303000

RESUMO

The prevalence of diseases borne by mosquitoes, particularly in the genus Aedes, is rising worldwide. This has been attributed, in part, to the dramatic rates of contemporary urbanization. While Aedes-borne disease risk varies within and between cities, few investigations use urban science-based approaches to examine how city structure and function contribute to vector or pathogen introduction and maintenance. Here, we integrate theories from complex adaptive systems, landscape ecology and urban geography to develop an urban systems framework for understanding Aedes-borne diseases. The framework establishes that cities comprise hierarchically structured patches of different land uses and characteristics. Properties of the patches (that is, composition) determine localized disease risk, while configuration and connectivity drive emergent patterns of pathogen spread. Complexity is added by incorporating individual and collective human social structures, considering how feedbacks among social actors and with the landscape drive risk and transmission. We discuss how these concepts apply to case studies of Aedes-borne disease from around the world. Ultimately, the framework strengthens existing theoretical and mixed qualitative-quantitative approaches, and advances considerations of how interventions including urban planning (for example, piped water provisioning) and emerging vector control strategies (for example, Wolbachia-infected mosquitoes) can be implemented to prevent and control the rising threat of Aedes-borne diseases.


Assuntos
Aedes , Doenças Transmitidas por Vetores , Animais , Humanos , Mosquitos Vetores , Ecologia , Urbanização , Doenças Transmitidas por Vetores/prevenção & controle
7.
Proc Natl Acad Sci U S A ; 119(15): e2119890119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377809

RESUMO

Urbanization can challenge sustainable development if it produces unequal outcomes. Infrastructure is an important urbanization dimension, providing services to support diverse urban activities. However, it can lock in unequal outcomes due to its durable nature. This paper studies inequalities in infrastructure distributions to derive insights into the structure and characteristics of unequal outcomes associated with urbanization. We analyzed infrastructure inequalities in two emerging economies in the Global South: India and South Africa. We developed and applied an inequality measure to understand the structure of inequality in infrastructure provisioning (based on census data) and infrastructure availability (based on satellite nighttime lights [NTLs] data). Consistent with differences in economic inequality, results show greater inequalities in South Africa than in India and greater urban inequalities than rural inequalities. Nevertheless, inequalities in urban infrastructure provisioning and infrastructure availability increase from finer to coarser spatial scales. NTL-based inequality measurements additionally show that inequalities are more concentrated at coarse spatial scales in India than in South Africa. Finally, results show that urban inequalities in infrastructure provisioning covary with urbanization levels conceptualized as a multidimensional phenomenon, including demographic, economic, and infrastructural dimensions. Similarly, inequalities in urban infrastructure availability increase monotonically with infrastructure development levels and urban population size. Together, these findings underscore infrastructure inequalities as a feature of urbanization and suggest that understanding urban inequalities requires applying an inequality lens to urbanization.

8.
Sci Data ; 9(1): 88, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296666

RESUMO

Urban settlements are rapidly growing outward and upward, with consequences for resource use, greenhouse gas emissions, and ecosystem and public health, but rates of change are uneven around the world. Understanding trajectories and predicting consequences of global urban expansion requires quantifying rates of change with consistent, well-calibrated data. Microwave backscatter data provides important information on upward urban growth - essentially the vertical built-up area. We developed a multi-sensor, multi-decadal, gridded (0.05° lat/lon) data set of global urban microwave backscatter, 1993-2020. Comparison of backscatter from two C-band sensors (ERS and ASCAT) and one Ku-band sensor (QuikSCAT) are made at four invariant non-urban sites (~3500 km2) to evaluate instrument stability and multi-decadal pattern. For urban areas, there was a strong linear correlation (overall R2 = 0.69) between 2015 ASCAT urban backscatter and a continental-scale gridded product of building volume, across 8450 urban grid cells (0.05° × 0.05°) in Europe, China, and the USA. This urban backscatter data set provides a time series characterizing global urban change over the past three decades.

9.
Proc Natl Acad Sci U S A ; 119(12): e2117297119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286193

RESUMO

SignificanceUnderstanding the impacts of urbanization and the associated urban land expansion on species is vital for informed urban planning that minimizes biodiversity loss. Predicting habitat that will be lost to urban land expansion for over 30,000 species under three different future scenarios, we find that up to 855 species are directly threatened due to unmitigated urbanization. Our projections pinpoint rapidly urbanizing regions of sub-Saharan Africa, South America, Mesoamerica, and Southeast Asia where, without careful planning, urbanization is expected to cause particularly large biodiversity loss. Our findings highlight the urgent need for an increased focus on urban land in global conservation strategies and identify high-priority areas for this engagement.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Previsões , Urbanização
10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131937

RESUMO

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Energia Renovável , Mudança Social
11.
Sci Total Environ ; 804: 150039, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520916

RESUMO

Mountainous regions are highly hazardous, and these hazards often lead to loss of human life. The Hindu Kush Himalaya (HKH), like many mountainous regions, is the site of multiple and overlapping natural hazards, but the distribution of multi-hazard risk and the populations exposed to it are poorly understood. Here, we present high-resolution transboundary models describing susceptibility to floods, landslides, and wildfires to understand population exposure to multi-hazard risk across the HKH. These models are created from historical remotely sensed data and hazard catalogs by the maximum entropy (Maxent) machine learning technique. Our results show that human settlements in the HKH are disproportionately concentrated in areas of high multi-hazard risk. In contrast, low-hazard areas are disproportionately unpopulated. Nearly half of the population in the region lives in areas that are highly susceptible to more than one hazard. Warm low-altitude foothill areas with perennially moist soils were identified as highly susceptible to multiple hazards. This area comprises only 31% of the study region, but is home to 49% of its population. The results also show that areas susceptible to multiple hazards are also major corridors of current migration and urban expansion, suggesting that current rates and patterns of urbanization will continue to put more people at risk. This study establishes that the population in the HKH is concentrated in areas susceptible to multiple hazards and suggests that current patterns of human movement will continue to increase exposure to multi-hazards in the HKH.


Assuntos
Inundações , Incêndios Florestais , Humanos
12.
Ambio ; 50(4): 834-869, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33715097

RESUMO

The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality-of rising system-wide turbulence-calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations.


Assuntos
COVID-19 , Pandemias , Biodiversidade , Mudança Climática , Humanos , SARS-CoV-2
13.
Sci Rep ; 10(1): 17241, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057014

RESUMO

The shift towards urban living is changing food demand. Past studies on India show significant urban-rural differences in food consumption. However, a scientific understanding of the underlying relationships between urbanization and food consumption is limited. This study provides the first detailed analysis of how urbanization influences both quantity and diversity of food consumption in India by harnessing the strength of multiple datasets, including consumer expenditure surveys, satellite imagery, and census data. Our statistical analysis shows three main findings. First, in contrast to existing studies, we find that much of the variation in food consumption quantity is due to income and not urbanization. After controlling for income and state-level differences, our results show that average consumption is higher in urban than rural areas for fewer than 10% of all commodities. That is, there is nearly no difference in average consumption between urban and rural residents. Second, we find the influence of urbanization as a population share on food consumption diversity to be statistically insignificant (p-value > 0.1). Instead, the results show that infrastructure, market access, percentage working women in urban areas, and norms and institutions have a statistically significant influence. Third, all covariates of food consumption diversity we tested were found to be associated with urbanization. This suggests that urbanization influences on food consumption are both indirect and multidimensional. These results show that increases in the urban population size alone do not explain changes in food consumption in India. If we are to understand how food consumption may change in the future due to urbanization, the study points to the need for a more complex and multidimensional understanding of the urbanization process that goes beyond demographic shifts.


Assuntos
Ingestão de Alimentos , Urbanização , Demografia , Humanos , Renda , Índia , População Rural/estatística & dados numéricos , Fatores Socioeconômicos , População Urbana/estatística & dados numéricos
14.
PLoS One ; 14(6): e0218883, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31251791

RESUMO

A real-time understanding of the distribution and duration of power outages after a major disaster is a precursor to minimizing their harmful consequences. Here, we develop an approach for using daily satellite nighttime lights data to create spatially disaggregated power outage estimates, tracking electricity restoration efforts after disasters strike. In contrast to existing utility data, these estimates are independent, open, and publicly-available, consistently measured across regions that may be serviced by several different power companies, and inclusive of distributed power supply (off-grid systems). We apply the methodology in Puerto Rico following Hurricane Maria, which caused the longest blackout in US history. Within all of the island's settlements, we track outages and recovery times, and link these measures to census-based demographic characteristics of residents. Our results show an 80% decrease in lights, in total, immediately after Hurricane Maria. During the recovery, a disproportionate share of long-duration power failures (> 120 days) occurred in rural municipalities (41% of rural municipalities vs. 29% of urban municipalities), and in the northern and eastern districts. Unexpectedly, we also identify large disparities in electricity recovery between neighborhoods within the same urban area, based primarily on the density of housing. For many urban areas, poor residents, the most vulnerable to increased mortality and morbidity risks from power losses, shouldered the longest outages because they lived in less dense, detached housing where electricity restoration lagged. The approach developed in this study demonstrates the potential of satellite-based estimates of power recovery to improve the real-time monitoring of disaster impacts, globally, at a spatial resolution that is actionable for the disaster response community.


Assuntos
Tempestades Ciclônicas , Desastres , Eletricidade , Astronave , Humanos , Centrais Elétricas , Porto Rico
15.
Proc Natl Acad Sci U S A ; 115(42): E9773-E9781, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275299

RESUMO

Increasing job accessibility is considered key to urban sustainability progress, both from an environmental and from a social perspective. However, sustainability outcomes depend on the processes contributing to accessibility trends, not just the trends themselves. Here, we ask whether sustainability benefits have followed from accessibility trends in the United States. We measure changes in accessibility from 2002 to 2014 across 909 US urban areas and decompose these changes to understand underlying infrastructure and land use processes. Our results show that job accessibility has increased across 74% of urban areas for the average resident, using both cars and transit. However, most of these accessibility gains were not achieved in ways that are inherently beneficial to environmental or social sustainability. In some urban areas, accessibility increases were conducive to reducing emissions, while in others, accessibility increases were conducive to reducing social inequities. However, accessibility increases almost never created a simultaneous social and environmental "win-win," as is often assumed. Our findings highlight how the spatial patterns of urbanization create tradeoffs between different facets of sustainability. Identifying where social objectives take precedence over environmental objectives (or vice versa) could help determine how accessibility increases can be accomplished to contribute to a more sustainable urban future.

16.
Environ Health Perspect ; 125(8): 087003, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28886599

RESUMO

BACKGROUND: India is undergoing rapid urbanization with simultaneous increases in the prevalence of cardiovascular disease (CVD). As urban areas become home to an increasing share of the world's population, it is important to understand relationships between the built environment and progression towards CVD. OBJECTIVE: We assessed associations between multiple measures of the built environment and biomarkers of early vascular aging (EVA) in the Population Study of Urban, Rural and Semiurban Regions for the Detection of Endovascular Disease and Prevalence of Risk Factors and Holistic Intervention Study (PURSE-HIS) in Chennai, India. METHODS: We performed a cross-sectional analysis of 3,150 study participants. EVA biomarkers included systolic and diastolic blood pressure (SBP and DBP), central pulse pressure (cPP) and flow-mediated dilatation (FMD). Multiple approaches were used to assign residential exposure to factors of the built environment: Moderate Resolution Imaging Spectroradiometer (MODIS)-derived normalized difference vegetation index (NDVI), a measure of vegetation health and greenness; Landsat-derived impervious surface area (ISA); and Visible Infrared Imaging Radiometer Suite (VIIRS)-derived nighttime lights (NTL). Multivariable regression models were used to assess associations between each built environment measure and biomarkers of EVA, adjusting for age, body mass index (BMI), cooking fuel type, energy intake, sex, physical activity, smoking, socioeconomic status, and stress. RESULTS: Residing in areas with higher ISA or NTL, or lower greenness, was significantly associated with elevated SBP, DBP, and cPP, and with lower FMD, adjusting for age, BMI, sex, smoking status, and other CVD risk factors. An interquartile range decrease in greenness had the largest increase in SBP [4.3 mmHg (95% CI: 2.9, 5.6)], DBP [1.2 mmHg (95% CI: 0.4, 2.0)] and cPP [3.1 mmHg (95% CI: 2.0, 4.1)], and the largest decrease in FMD [-1.5% (95%CI: -2.2%, -0.9%]. CONCLUSION: Greenness, ISA, and NTL were associated with increased SBP, DBP, and cPP, and with reduced FMD, suggesting a possible additional EVA pathway for the relationship between urbanization and increased CVD prevalence in urban India. https://doi.org/10.1289/EHP541.


Assuntos
Doenças Cardiovasculares/epidemiologia , Conservação dos Recursos Naturais/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Envelhecimento/fisiologia , Estudos Transversais , Poluição Ambiental/estatística & dados numéricos , Índia/epidemiologia , Prevalência , Características de Residência , Fatores Socioeconômicos
17.
Proc Natl Acad Sci U S A ; 114(34): 8935-8938, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784798
18.
Proc Natl Acad Sci U S A ; 114(34): 8945-8950, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28069957

RESUMO

Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.

19.
Proc Natl Acad Sci U S A ; 114(34): 8939-8944, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28028219

RESUMO

Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.


Assuntos
Agricultura/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Previsões , Urbanização/tendências , África , Agricultura/métodos , Ásia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Geografia
20.
Sci Data ; 3: 160034, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271481

RESUMO

How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends.


Assuntos
Demografia , População Urbana , Urbanização , Cidades , Humanos , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA