Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
PeerJ ; 12: e17206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584940

RESUMO

Kerstersia gyiorum is a Gram-negative bacterium found in various animals, including humans, where it has been associated with various infections. Knowledge of the basic biology of K. gyiorum is essential to understand the evolutionary strategies of niche adaptation and how this organism contributes to infectious diseases; however, genomic data about K. gyiorum is very limited, especially from non-human hosts. In this work, we sequenced 12 K. gyiorum genomes isolated from healthy free-living brown-throated sloths (Bradypus variegatus) in the Parque Estadual das Fontes do Ipiranga (São Paulo, Brazil), and compared them with genomes from isolates of human origin, in order to gain insights into genomic diversity, phylogeny, and host specialization of this species. Phylogenetic analysis revealed that these K. gyiorum strains are structured according to host. Despite the fact that sloth isolates were sampled from a single geographic location, the intra-sloth K. gyiorum diversity was divided into three clusters, with differences of more than 1,000 single nucleotide polymorphisms between them, suggesting the circulation of various K. gyiorum lineages in sloths. Genes involved in mobilome and defense mechanisms against mobile genetic elements were the main source of gene content variation between isolates from different hosts. Sloth-specific K. gyiorum genome features include an IncN2 plasmid, a phage sequence, and a CRISPR-Cas system. The broad diversity of defense elements in K. gyiorum (14 systems) may prevent further mobile element flow and explain the low amount of mobile genetic elements in K. gyiorum genomes. Gene content variation may be important for the adaptation of K. gyiorum to different host niches. This study furthers our understanding of diversity, host adaptation, and evolution of K. gyiorum, by presenting and analyzing the first genomes of non-human isolates.


Assuntos
Alcaligenaceae , Bichos-Preguiça , Animais , Bichos-Preguiça/genética , Filogenia , Brasil , Alcaligenaceae/genética
2.
J Proteomics ; 297: 105125, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364905

RESUMO

Leptospira is a genus of bacteria that includes free-living saprophytic species found in water or soil, and pathogenic species, which are the etiologic agents of leptospirosis. Besides all the efforts, there are only a few proteins described as virulence factors in the pathogenic strain L. interrogans. This work aims to perform L. biflexa serovar Patoc1 strain Paris global proteome and to compare with the proteome database of pathogenic L. interrogans serovar Copenhageni strain Fiocruz L1-130. We identified a total of 2327 expressed proteins of L. biflexa by mass spectrometry. Using the Get Homologues software with the global proteome of L. biflexa and L. interrogans, we found orthologous proteins classified into conserved, low conserved, and specific proteins. Comparative bioinformatic analyses were performed to understand the biological functions of the proteins, subcellular localization, the presence of signal peptide, structural domains, and motifs using public softwares. These results lead to the selection of 182 low conserved within the saprophyte, and 176 specific proteins of L. interrogans. It is anticipated that these findings will indicate further studies to uncover virulence factors in the pathogenic strain. This work presents for the first time the global proteome of saprophytic strain L. biflexa serovar Patoc, strain Patoc1. SIGNIFICANCE: The comparative analysis established an array of specific proteins in pathogenic strain that will narrow down the identification of immune protective proteins that will help fight leptospirosis.


Assuntos
Leptospira interrogans , Leptospira , Leptospirose , Humanos , Proteoma/metabolismo , Fatores de Virulência/metabolismo
3.
Curr Microbiol ; 80(12): 394, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903895

RESUMO

Multidrug-resistant K. pneumoniae is one of the main causes of hospital-acquired infections worldwide and frequently carries antimicrobial resistance genes in moving elements. In this study, we described a K. pneumoniae clinical isolate carrying simultaneous chromosomal blaKPC, and plasmid-mediated blaNDM and blaOXA-9. The isolate is multidrug-resistant and belongs to ST 225. While blaKPC were identified in the chromosome, the blaNDM was mediated by IncFII(K) plasmid and the blaOXA-9, in a IncFIB(K) plasmid. The blaKPC context was composed by Tn4401 transposon and two insertion sequences ISKpn6 and ISKpn7. The co-production of diverse ß-lactamases brings an alert about a new adaptive profile of K. pneumoniae strains and their dissemination in the hospital-acquired infectious.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Brasil , beta-Lactamases/genética , Plasmídeos/genética , Cromossomos , Testes de Sensibilidade Microbiana
4.
Microorganisms ; 10(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36144328

RESUMO

Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is one of the most important foodborne pathogens that infect humans globally. The gastrointestinal tracts of animals like pigs, poultry or cattle are the main reservoirs of Salmonella serotypes. Guinea pig meat is an important protein source for Andean countries, but this animal is commonly infected by S. Typhimurium, producing high mortality rates and generating economic losses. Despite its impact on human health, food security, and economy, there is no genomic information about the S. Typhimurium responsible for the guinea pig infections in Peru. Here, we sequence and characterize 11 S. Typhimurium genomes isolated from guinea pigs from four farms in Lima-Peru. We were able to identify two genetic clusters (HC100_9460 and HC100_9757) distinguishable at the H100 level of the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing (HierCC-cgMLST) scheme with an average of 608 SNPs of distance. All sequences belonged to sequence type 19 (ST19) and HC100_9460 isolates were typed in silico as monophasic variants (1,4,[5],12:i:-) lacking the fljA and fljB genes. Phylogenomic analysis showed that human isolates from Peru were located within the same genetic clusters as guinea pig isolates, suggesting that these lineages can infect both hosts. We identified a genetic antimicrobial resistance cassette carrying the ant(3)-Ia, dfrA15, qacE, and sul1 genes associated with transposons TnAs3 and IS21 within an IncI1 plasmid in one guinea pig isolate, while antimicrobial resistance genes (ARGs) for ß-lactam (blaCTX-M-65) and colistin (mcr-1) resistance were detected in Peruvian human-derived isolates. The presence of a virulence plasmid highly similar to the pSLT plasmid (LT2 reference strain) containing the spvRABCD operon was found in all guinea pig isolates. Finally, seven phage sequences (STGP_Φ1 to STGP_Φ7) were identified in guinea pig isolates, distributed according to the genetic lineage (H50 clusters level) and forming part of the specific gene content of each cluster. This study presents, for the first time, the genomic characteristics of S. Typhimurium isolated from guinea pigs in South America, showing particular diversity and genetic elements (plasmids and prophages) that require special attention and also broader studies in different periods of time and locations to determine their impact on human health.

5.
Future Microbiol ; 17: 1009-1026, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35880493

RESUMO

Aim: To unveil a putative correlation between phage genome flexibility and virion morphogenesis yield. Materials & methods: A deeper analysis of the mechanical properties of three Pseudomonas aeruginosa lytic phage genomes was undertaken, together with full genome cyclizability calculations. Results & conclusion: A putative correlation was established among phage genome flexibility, eclipse timeframe and virion particle morphogenesis yield, with a more flexible phage genome leading to a higher burst size and a more rigid phage genome leading to lower burst sizes. The results obtained are highly relevant to understand the influence of the phage genome plasticity on the virion morphogenesis yield inside the infected bacterial host cells and assumes particular relevance in the actual context of bacterial resistance to antibiotics.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Bacteriófagos/genética , Genoma Viral , Morfogênese , Pseudomonas/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Vírion/genética
6.
Microorganisms ; 10(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35630358

RESUMO

Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.

7.
iScience ; 25(3): 103861, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198912

RESUMO

The question of whether host genetics plays a role in the development of the infant gut microbiota does not, as yet, have a clear answer. In order to throw additional light on this question, we have analyzed 16S rRNA amplicon sequences from 99 valid fecal samples of five sets of dichorionic triplet babies born by C-section from 1 to 36 months of age. Beta diversity analysis showed that monozygotic twins were more similar to each other than their dizygotic siblings. Monozygotic twins also tended to share more amplicon sequence variants between them. Heritability analysis showed that the genera Bacteroides and Veillonella are particularly susceptible to host genetics. We conclude that infant gut microbiota development is influenced by host genetics, but this effect is subtle and may affect only certain bacterial taxa during a limited time period early in life.

8.
Gene ; 821: 146326, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181506

RESUMO

Plant natriuretic peptide-like (PNP) are signaling molecules related to adaptive responses to stress. The Arabidopsis thaliana PNP (AtPNP-A) is capable of modulating catalase 2 (CAT2) and rubisco activase (RCA) activity in some circumstances. Interestingly, many plant-pathogens co-opted PNP-like molecules to their benefit. For instance, the citrus pathogen Xanthomonas citri carries a PNP-like (XacPNP) that can mimic and regulate plant homeostasis, and many phytopathogenic fungi carry effectors (e.g., Ave1 and AvrLm6) that are indeed PNP-like homologs. This work investigates the PNP-like evolution across the tree of life, revealing many parallel gains and duplications in plant and fungi kingdoms. All PNP-like proteins in the final dataset are structurally similar, containing the AtPNP-A active domains modulating CAT2 activity and RCA interaction. Comparative genomics evinced that XacPNP is a lysogenic conversion factor associated with a Myoviridae-like prophage identified in many Xanthomonas species. Surprisingly, a PNP-like homolog was identified in Bemisia tabaci, an important agricultural pest, being to date the second example of lateral gene transfer (LGT) from plant to the whitefly. Moreover, the Bemisia PNP-like homolog can also be considered a potential new effector of this phloem-feeding insect. Noteworthy, the whiteflies infest many plants carrying PNP-like copies and interact with some of their bacterial and fungal pathogens, strongly suggesting complex recipient/donor traits of PNP by LGT and bringing new insights into the evolution of host-pathogen arms race across the tree of life.


Assuntos
Citrus/genética , Duplicação Gênica , Hemípteros/genética , Peptídeos Natriuréticos/genética , Xanthomonas/genética , Animais , Proteínas de Bactérias/genética , Evolução Molecular , Transferência Genética Horizontal , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética
9.
EBioMedicine ; 77: 103891, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35220042

RESUMO

BACKGROUND: Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-ß production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. METHODS: We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. FINDINGS: In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients' respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. INTERPRETATION: SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. FUNDING: FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.


Assuntos
Bronquiolite , COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Bronquiolite/tratamento farmacológico , Bronquiolite/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Lactente , Pulmão/metabolismo , Camundongos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2
10.
J Phycol ; 58(3): 406-423, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35090189

RESUMO

Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.


Assuntos
Genoma Mitocondrial , Gracilaria , Rodófitas , Ágar/metabolismo , Galactose/metabolismo , Gracilaria/genética , Rodófitas/genética , Rodófitas/metabolismo
11.
Future Microbiol ; 17: 111-141, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989245

RESUMO

Aim: Two lytic phages were isolated using P. aeruginosa DSM19880 as host and fully characterized. Materials & methods: Phages were characterized physicochemically, biologically and genomically. Results & conclusion: Host range analysis revealed that the phages also infect some multidrug-resistant (MDR) P. aeruginosa clinical isolates. Increasing MOI from 1 to 1000 significantly increased phage efficiency and retarded bacteria regrowth, but phage ph0034 (reduction of 7.5 log CFU/ml) was more effective than phage ph0031 (reduction of 5.1 log CFU/ml) after 24 h. Both phages belong to Myoviridae family. Genome sequencing of phages ph0031 and ph0034 showed that they do not carry toxin, virulence, antibiotic resistance and integrase genes. The results obtained are highly relevant in the actual context of bacterial resistance to antibiotics.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Bacteriófagos/genética , Especificidade de Hospedeiro , Técnicas In Vitro , Myoviridae/genética
12.
Microbiol Resour Announc ; 10(31): e0052821, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351231

RESUMO

We report the microbial 16S rRNA gene and internal transcribed spacer (ITS) sequencing data of maize and soybean plants and field soil from eight locations in Brazil. Enterobacter and Pseudomonas were among the most abundant genera. The data suggest the presence of several species that have not been documented for Brazil.

13.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390574

RESUMO

Assessing the compatibility between gene family phylogenies is a crucial and often computationally demanding step in many phylogenomic analyses. Here, we describe the Evolutionary Similarity Index (IES), a means to assess shared evolution between gene families using a weighted orthogonal distance regression model applied to sequence distances. The utilization of pairwise distance matrices circumvents comparisons between gene tree topologies, which are inherently uncertain and sensitive to evolutionary model choice, phylogenetic reconstruction artifacts, and other sources of error. Furthermore, IES enables the many-to-many pairing of multiple copies between similarly evolving gene families. This is done by selecting non-overlapping pairs of copies, one from each assessed family, and yielding the least sum of squared residuals. Analyses of simulated gene family data sets show that IES's accuracy is on par with popular tree-based methods while also less susceptible to noise introduced by sequence alignment and evolutionary model fitting. Applying IES to an empirical data set of 1,322 genes from 42 archaeal genomes identified eight major clusters of gene families with compatible evolutionary trends. The most cohesive cluster consisted of 62 genes with compatible evolutionary signal, which occur as both single-copy and multiple homologs per genome; phylogenetic analysis of concatenated alignments from this cluster produced a tree closely matching previously published species trees for Archaea. Four other clusters are mainly composed of accessory genes with limited distribution among Archaea and enriched toward specific metabolic functions. Pairwise evolutionary distances obtained from these accessory gene clusters suggest patterns of interphyla horizontal gene transfer. An IES implementation is available at https://github.com/lthiberiol/evolSimIndex.


Assuntos
Evolução Molecular , Genoma Arqueal , Archaea/genética , Filogenia , Alinhamento de Sequência
15.
Microbiome ; 9(1): 134, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112246

RESUMO

The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Feminino , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Sistema Respiratório
16.
Environ Microbiol Rep ; 13(3): 348-354, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34018688

RESUMO

Viruses are now recognized as important players in microbial dynamics and biogeochemical cycles in the oceans. Yet, compared with aquatic ecosystems, virus discovery in terrestrial ecosystems has been challenging partly due to the inherent complexity of soils. To expand our understanding of soil viruses and their putative contributions to soil microbial processes, we analysed metagenomes of community-level virus-enriched suspensions by tangential flow filtration obtained from two French agricultural soils. We found viral sequences representing a total of 239 viral operational taxonomic units that corresponded to 29.5% of the mapping reads in the metagenomic datasets. The analysis of their genomic sequences revealed novel virocell metabolic potential with implications to virus-host interactions, carbon cycling, plant-beneficial functions in the rhizosphere, horizontal gene transfer and other relevant microbial strategies applied to survive in soils.


Assuntos
Metagenoma , Vírus , Ecossistema , Rizosfera , Solo , Vírus/genética
17.
Biophys Rev ; 13(6): 905-909, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35059016

RESUMO

Metagenome-assembled genomes (MAGs) are microbial genomes reconstructed from metagenome data. In the last few years, many thousands of MAGs have been reported in the literature, for a variety of environments and host-associated microbiota, including humans. MAGs have helped us better understand microbial populations and their interactions with the environment where they live; moreover most MAGs belong to novel species, therefore helping to decrease the so-called microbial dark matter. However, questions about the biological reality of MAGs have not, in general, been properly addressed. In this review, I define the notions of hypothetical MAGs and conserved hypothetical MAGs. These notions should help with the understanding of the biological reality of MAGs, their worldwide occurrence, and the efforts to improve MAG recovery processes.

18.
19.
Microbiome ; 8(1): 52, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252805

RESUMO

BACKGROUND: Bacteriophages, the viruses infecting bacteria, are biological entities that can control their host populations. The ecological relevance of phages for microbial systems has been widely explored in aquatic environments, but the current understanding of the role of phages in terrestrial ecosystems remains limited. Here, our objective was to quantify the extent to which phages drive the assembly and functioning of soil bacterial communities. We performed a reciprocal transplant experiment using natural and sterilized soil incubated with different combinations of two soil microbial communities, challenged against native and non-native phage suspensions as well as against a cocktail of phage isolates. We tested three different community assembly scenarios by adding phages: (a) during soil colonization, (b) after colonization, and (c) in natural soil communities. One month after inoculation with phage suspensions, bacterial communities were assessed by 16S rRNA amplicon gene sequencing. RESULTS: By comparing the treatments inoculated with active versus autoclaved phages, our results show that changes in phage pressure have the potential to impact soil bacterial community composition and diversity. We also found a positive effect of active phages on the soil ammonium concentration in a few treatments, which indicates that increased phage pressure may also be important for soil functions. CONCLUSIONS: Overall, the present work contributes to expand the current knowledge about soil phages and provide some empirical evidence supporting their relevance for soil bacterial community assembly and functioning. Video Abstract.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Interações entre Hospedeiro e Microrganismos , Nitrogênio/metabolismo , Microbiologia do Solo , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bacteriófagos/fisiologia , Ecossistema , Microbiota , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
20.
PLoS Genet ; 15(12): e1008482, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31846472

RESUMO

The specific genes and molecules that drive physiological angiogenesis differ from those involved in pathological angiogenesis, suggesting distinct mechanisms for these seemingly related processes. Unveiling genes and pathways preferentially associated with pathologic angiogenesis is key to understanding its mechanisms, thereby facilitating development of novel approaches to managing angiogenesis-dependent diseases. To better understand these different processes, we elucidated the transcriptome of the mouse retina in the well-accepted oxygen-induced retinopathy (OIR) model of pathological angiogenesis. We identified 153 genes changed between normal and OIR retinas, which represent a molecular signature relevant to other angiogenesis-dependent processes such as cancer. These genes robustly predict the survival of breast cancer patients, which was validated in an independent 1,000-patient test cohort (40% difference in 15-year survival; p = 2.56 x 10-21). These results suggest that the OIR model reveals key genes involved in pathological angiogenesis, and these may find important applications in stratifying tumors for treatment intensification or for angiogenesis-targeted therapies.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Neovascularização Patológica/genética , Oxigênio/efeitos adversos , Retina/química , Idoso , Animais , Neoplasias da Mama/mortalidade , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/mortalidade , Retina/efeitos dos fármacos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA