RESUMO
Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.
Assuntos
Interfaces Cérebro-Computador , Análise por Conglomerados , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Fala/fisiologia , Epilepsia/fisiopatologia , Humanos , MasculinoRESUMO
Towards unraveling the influenza A (H1N1) immunome, this work aims at constructing the murine host response pathway interactome. To accomplish that, an ensemble of dynamic and time-varying Gene Regulatory Network Inference methodologies was recruited to set a confident interactome based on mouse time series transcriptome data (day 1-day 60). The proposed H1N1 interactome demonstrated significant transformations among activated and suppressed pathways in time. Enhanced interplay was observed at day 1, while the maximal network complexity was reached at day 8 (correlated with viral clearance and iBALT tissue formation) and one interaction was present at day 40. Next, we searched for common interactivity features between the murine-adapted PR8 strain and other influenza A subtypes/strains. For this, two other interactomes, describing the murine host response against H5N1 and H1N1pdm, were constructed, which in turn validated many of the observed interactions (in the period day 1-day 7). The H1N1 interactome revealed the role of cell cycle both in innate and adaptive immunity (day 1-day 14). Also, pathogen sensory pathways (e.g., RIG-I) displayed long-lasting association with cytokine/chemokine signaling (until day 8). Interestingly, the above observations were also supported by the H5N1 and H1N1pdm models. It also elucidated the enhanced coupling of the activated innate pathways with the suppressed PPAR signaling to keep low inflammation until viral clearance (until day 14). Further, it showed that interactions reflecting phagocytosis processes continued long after the viral clearance and the establishment of adaptive immunity (day 8-day 40). Additionally, interactions involving B cell receptor pathway were evident since day 1. These results collectively inform the emerging field of public health omics and future clinical studies aimed at deciphering dynamic host responses to infectious agents.
Assuntos
Genômica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Transdução de Sinais , Fatores de Tempo , TranscriptomaRESUMO
Recent advances in pharmacogenomics technologies allow bold steps to be taken towards personalized medicine, more accurate health planning, and personalized drug development. In this framework, systems pharmacology network-based approaches offer an appealing way for integrating multi-omics data and set the basis for defining systems-level drug response biomarkers. On the road to individualized tamoxifen treatment in estrogen receptor-positive breast cancer patients, we examine the dynamics of the attendant pharmacological response mechanisms. By means of an "integromics" network approach, we assessed the tamoxifen effect through the way the high-order organization of interactome (i.e., the modules) is perturbed. To accomplish that, first we integrated the time series transcriptome data with the human protein interaction data, and second, an efficient module-detecting algorithm was applied onto the composite graphs. Our findings show that tamoxifen induces severe modular transformations on specific areas of the interactome. Our modular biomarkers in response to tamoxifen attest to the immunomodulatory role of tamoxifen, and further reveal that it deregulates cell cycle and apoptosis pathways, while coordinating the proteasome and basal transcription factors. To the best of our knowledge, this is the first report that informs the fields of personalized medicine and clinical pharmacology about the actual dynamic interactome response to tamoxifen administration.
Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/genética , Farmacogenética , Medicina de Precisão , Tamoxifeno/uso terapêutico , Transcriptoma , Algoritmos , Apoptose/genética , Biomarcadores Farmacológicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ciclo Celular/genética , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli. RESULTS: We applied the Time Varying Dynamic Bayesian Network (TV-DBN) method for reconstructing the gene regulatory interactions based on time series gene expression data for the mouse C57BL/6J inbred strain after infection with influenza A H1N1 (PR8) virus. Initially, 3500 differentially expressed genes were clustered with the use of k-means algorithm. Next, the successive in time GRNs were built over the expression profiles of cluster centroids. Finally, the identified GRNs were examined with several topological metrics and available protein-protein and protein-DNA interaction data, transcription factor and KEGG pathway data. CONCLUSIONS: Our results elucidate the potential of TV-DBN approach in providing valuable insights into the temporal rewiring of the lung transcriptome in response to H1N1 virus.
RESUMO
Anxiety disorders are considered the most prevalent of mental disorders. Nevertheless, the exact reasons that provoke them to patients remain yet not clearly specified, while the literature concerning the environment for monitoring and treatment support is rather scarce warranting further investigation. Toward this direction, in this study a context-aware approach is proposed, aiming to provide medical supervisors with a series of applications and personalized services targeted to exploit the multiparameter contextual data collected through a long-term monitoring procedure. More specifically, an application that assists the archiving and retrieving of the patients' health records was developed, and four treatment supportive services were considered. The three of them focus on the discovery of possible associations between the patient's contextual data; the last service aims at predicting the stress level a patient might suffer from, in a given context. The proposed approach was experimentally evaluated quantitatively (in terms of computational efficiency and time requirements) and qualitatively by experts on the field of mental health domain. The feedback received was very encouraging and the proposed approach seems quite useful to the anxiety disorders' treatment.
Assuntos
Transtornos de Ansiedade/terapia , Inteligência Artificial , Mineração de Dados/métodos , Modelos Biológicos , Estresse Psicológico/terapia , Atividades Cotidianas , Teorema de Bayes , Humanos , Estilo de Vida , Reconhecimento Automatizado de Padrão , Medicina de Precisão , Curva ROCRESUMO
While anxiety disorders exhibit an impressive spread especially in western societies, context-awareness seems a promising technology to provide assistance to physicians in psychotherapy sessions. In the present paper an approach addressing the assistance of the anxiety disorders' treatment is proposed. The suggested method employs the a priori association rule mining algorithm in order to achieve dynamic update of patient profiles according to generated rules describing the underlying relations between patients' main context conditions and their stress level. This method was evaluated by therapists specializing in the mental health domain and the feedback received was very encouraging with respect to the assistance dynamic patient profiles offer, during CBT sessions.