Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 13(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509094

RESUMO

Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level. [CuL2]Br2 reduces the FV of PSII fluorescence. Artificial electron donors do not rescind the effect of [CuL2]Br2. The inhibitory mechanism of [CuL2]Br2 remains unclear. To explore this mechanism, we investigated the effect of [CuL2]Br2 in the presence/absence of the well-studied inhibitor DCMU on PSII-containing membranes by OJIP Chl fluorescence transient measurements. [CuL2]Br2 has two effects on Chl fluorescence transients: (1) a substantial decrease of the Chl fluorescence intensity throughout the entire kinetics, and (2) an auxiliary "diuron-like" effect. The initial decrease dominates and is observed both with and without DCMU. In contrast, the "diuron-like" effect is small and is observed only without DCMU. We propose that [CuL2]Br2 has two binding sites for PSII with different affinities. At the high-affinity site, [CuL2]Br2 produces effects similar to PSII reaction center inhibition, while at the low-affinity site, [CuL2]Br2 produces effects identical to those of DCMU. These results are compared with other PSII-specific classes of herbicides.


Assuntos
Diurona , Herbicidas , Diurona/metabolismo , Diurona/farmacologia , Clorofila/metabolismo , Cobre/farmacologia , Spinacia oleracea , Complexo de Proteína do Fotossistema II/metabolismo , Fotoquímica , Fluorescência , Herbicidas/farmacologia
2.
Cells ; 11(17)2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36078088

RESUMO

The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids' intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.


Assuntos
Complexo de Proteína do Fotossistema II , Spinacia oleracea , Clorofila/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA