Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Angiogenesis ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733496

RESUMO

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.

2.
Biol Methods Protoc ; 9(1): bpae019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605978

RESUMO

Organoid generation from pluripotent stem cells is a cutting-edge technique that has created new possibilities for modelling human organs in vitro, as well as opening avenues for regenerative medicine. Here, we present a protocol for generating skin organoids (SKOs) from human-induced pluripotent stem cells (hiPSCs) via direct embryoid body formation. This method provides a consistent start point for hiPSC differentiation, resulting in SKOs with complex skin architecture and appendages (e.g. hair follicles, sebaceous glands, etc.) across hiPSC lines from two different somatic sources.

3.
Small ; 20(16): e2304879, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044307

RESUMO

The development of skin organs for studying developmental pathways, modeling diseases, or regenerative medicine purposes is a major endeavor in the field. Human induced pluripotent stem cells (hiPSCs) are successfully used to derive skin cells, but the field is still far from meeting the goal of creating skin containing appendages, such as hair follicles and sweat glands. Here, the goal is to generate skin organoids (SKOs) from human skin fibroblast or placental CD34+ cell-derived hiPSCs. With all three hiPSC lines, complex SKOs with stratified skin layers and pigmented hair follicles are generated with different efficacies. In addition, the hiPSC-derived SKOs develop sebaceous glands, touch-receptive Merkel cells, and more importantly eccrine sweat glands. Together, physiologically relevant skin organoids are developed by direct induction of embryoid body formation, along with simultaneous inactivation of transforming growth factor beta signaling, activation of fibroblast growth factor signaling, and inhibition of bone morphogenetic protein signaling pathways. The skin organoids created in this study can be used as valuable platforms for further research into human skin development, disease modeling, or reconstructive surgeries.


Assuntos
Células-Tronco Pluripotentes Induzidas , Gravidez , Humanos , Feminino , Placenta , Pele , Folículo Piloso/fisiologia , Organoides
4.
Prog Mol Biol Transl Sci ; 199: 327-350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37678977

RESUMO

Differentiated skin cells have limited self-renewal capacity; thus, the application of stem/progenitor cells, adult or induced stem cells, has attracted much attention for wound healing applications. Upon skin injury, vascularization, known as a highly dynamic process, occurs with the contribution of cells, the extracellular matrix, and relevant growth factors. Considering the importance of this process in tissue regeneration, several strategies have been proposed to enhance angiogenesis and accelerate wound healing. Previous studies report the effectiveness of stem/progenitor cells in skin wound healing by facilitating the vascularization process. This chapter reviews and highlights some of the key and recent investigations on application of stem/progenitor cells to induce skin revascularization after trauma.


Assuntos
Neovascularização Fisiológica , Transplante de Pele , Transplante de Células-Tronco , Humanos , Animais , Pele , Cicatrização , Engenharia Tecidual
5.
Pharmaceutics ; 15(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37376155

RESUMO

When developing topical semisolid products, it is crucial to consider the metamorphosis of the formulation under the "in use" condition. Numerous critical quality characteristics, including rheological properties, thermodynamic activity, particle size, globule size, and the rate/extent of drug release/permeation, can be altered during this process. This study aimed to use lidocaine as a model drug to establish a connection between the evaporation and change of rheological properties and the permeation of active pharmaceutical ingredients (APIs) in topical semisolid products under the "in use" condition. The evaporation rate of the lidocaine cream formulation was calculated by measuring the weight loss and heat flow of the sample using DSC/TGA. Changes in rheological properties due to metamorphosis were assessed and predicted using the Carreau-Yasuda model. The impact of solvent evaporation on a drug's permeability was studied by in vitro permeation testing (IVPT) using occluded and unconcluded cells. Overall, it was found that the viscosity and elastic modulus of prepared lidocaine cream gradually increased with the time of evaporation as a result of the aggregation of carbopol micelles and the crystallization of API after application. Compared to occluded cells, the permeability of lidocaine for formulation F1 (2.5% lidocaine) in unoccluded cells decreased by 32.4%. This was believed to be the result of increasing viscosity and crystallization of lidocaine instead of depletion of API from the applied dose, which was confirmed by formulation F2 with a higher content of API (5% lidocaine) showing a similar pattern, i.e., a 49.7% reduction of permeability after 4 h of study. To the best of our knowledge, this is the first study to simultaneously demonstrate the rheological change of a topical semisolid formulation during volatile solvent evaporation, resulting in a concurrent decrease in the permeability of API, which provides mathematical modelers with the necessary background to build complex models that incorporate evaporation, viscosity, and drug permeation in the simulation once at a time.

6.
Inflammopharmacology ; 31(1): 145-169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36609717

RESUMO

Cell-derived exosomes have opened new horizons in modern therapy for advanced drug delivery and therapeutic applications, due to their key features such as low immunogenicity, high physicochemical stability, capacity to penetrate into tissues, and the innate capacity to communicate with other cells over long distances. Exosome-based liquid biopsy has been potentially used for the diagnosis and prognosis of a range of disorders. Exosomes deliver therapeutic agents, including immunological modulators, therapeutic drugs, and antisense oligonucleotides to certain targets, and can be used as vaccines, though their clinical application is still far from reality. Producing exosomes on a large-scale is restricted to their low circulation lifetime, weak targeting capacity, and inappropriate controls, which need to be refined before being implemented in practice. Several bioengineering methods have been used for refining therapeutic applications of exosomes and promoting their effectiveness, on the one hand, and addressing the existing challenges, on the other. In the short run, new diagnostic platforms and emerging therapeutic strategies will further develop exosome engineering and therapeutic potential. This requires a thorough analysis of exosome engineering approaches along with their merits and drawbacks, as outlined in this paper. The present study is a comprehensive review of novel techniques for exosome development in terms of circulation time in the body, targeting capacity, and higher drug loading/delivery efficacies.


Assuntos
Exossomos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas
7.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559242

RESUMO

BACKGROUND: Cell therapy holds great promise for cutaneous wound treatment but presents practical and clinical challenges, mainly related to the lack of a supportive and inductive microenvironment for cells after transplantation. Main: This review delineates the challenges and opportunities in cell therapies for acute and chronic wounds and highlights the contribution of biofabricated matrices to skin reconstruction. The complexity of the wound healing process necessitates the development of matrices with properties comparable to the extracellular matrix in the skin for their structure and composition. Over recent years, emerging biofabrication technologies have shown a capacity for creating complex matrices. In cell therapy, multifunctional material-based matrices have benefits in enhancing cell retention and survival, reducing healing time, and preventing infection and cell transplant rejection. Additionally, they can improve the efficacy of cell therapy, owing to their potential to modulate cell behaviors and regulate spatiotemporal patterns of wound healing. CONCLUSION: The ongoing development of biofabrication technologies promises to deliver material-based matrices that are rich in supportive, phenotype patterning cell niches and are robust enough to provide physical protection for the cells during implantation.

8.
Adv Healthc Mater ; 11(22): e2201626, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063498

RESUMO

Much effort has been made to generate human skin organ in the laboratory. Yet, the current models are limited due to the lack of many critical biological and structural features of the skin. Importantly, these in vitro models lack appendages and fail to recapitulate the whole human skin construction. Thus, engineering a human skin with the capacity to generate all components, including appendages, is a major challenge. This review intends to provide an update on the recent efforts underway to regenerate appendage-bearing skin organs based on scaffold-free and scaffold-based bioengineering approaches. Although the mouse skin equivalents containing hair follicles, sebaceous glands, and sweat glands have been established in vitro, there has been limited success in humans. A combination of biofabricated matrices and cell aggregates, such as organoids, can pave the way for generating skin substitutes with human-like biological, structural, and physical features. Accordingly, the formation of human skin organoids and reconstruction of vascularized skin equipped with immune cells prompt calls for more scientific research. The generation of appendage-bearing skin substitutes can be applied in practice for wound healing, hair restoration, and scar treatment.


Assuntos
Pele Artificial , Pele , Camundongos , Animais , Humanos , Folículo Piloso , Cicatrização , Regeneração
9.
Bioeng Transl Med ; 7(3): e10386, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176609

RESUMO

An ideal tissue-engineered dermal substitute should possess angiogenesis potential to promote wound healing, antibacterial activity to relieve the bacterial burden on skin, as well as sufficient porosity for air and moisture exchange. In light of this, a glass-ceramic (GC) has been incorporated into chitosan and gelatin electrospun nanofibers (240-360 nm), which MEFs were loaded on it for healing acceleration. The GC was doped with silver to improve the antibacterial activity. The bioactive nanofibrous scaffolds demonstrated antibacterial and superior antibiofilm activities against Gram-negative and Gram-positive bacteria. The nanofibrous scaffolds were biocompatible, hemocompatible, and promoted cell attachment and proliferation. Nanofibrous skin substitutes with or without Ag-doped GC nanoparticles did not induce an inflammatory response and attenuated LPS-induced interleukin-6 release by dendritic cells. The rate of biodegradation of the nanocomposite was similar to the rate of skin regeneration under in vivo conditions. Histopathological evaluation of full-thickness excisional wounds in BALB/c mice treated with mouse embryonic fibroblasts-loaded nanofibrous scaffolds showed enhanced angiogenesis, and collagen synthesis as well as regeneration of the sebaceous glands and hair follicles in vivo.

10.
Burns Trauma ; 10: tkac036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017082

RESUMO

Pathological scarring imposes a major clinical and social burden worldwide. Human cutaneous wounds are responsive to mechanical forces and convert mechanical cues to biochemical signals that eventually promote scarring. To understand the mechanotransduction pathways in cutaneous scarring and develop new mechanotherapy approaches to achieve optimal scarring, the current study highlights the mechanical behavior of unwounded and scarred skin as well as intra- and extracellular mechanisms behind keloid and hypertrophic scars. Additionally, the therapeutic interventions that promote optimal scar healing by mechanical means at the molecular, cellular or tissue level are extensively reviewed. The current literature highlights the significant role of fibroblasts in wound contraction and scar formation via differentiation into myofibroblasts. Thus, understanding myofibroblasts and their responses to mechanical loading allows the development of new scar therapeutics. A review of the current clinical and preclinical studies suggests that existing treatment strategies only reduce scarring on a small scale after wound closure and result in poor functional and aesthetic outcomes. Therefore, the perspective of mechanotherapies needs to consider the application of both mechanical forces and biochemical cues to achieve optimal scarring. Moreover, early intervention is critical in wound management; thus, mechanoregulation should be conducted during the healing process to avoid scar maturation. Future studies should either consider combining mechanical loading (pressure) therapies with tension offloading approaches for scar management or developing more effective early therapies based on contraction-blocking biomaterials for the prevention of pathological scarring.

11.
STAR Protoc ; 3(2): 101354, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35509970

RESUMO

A need to identify a stem cell source for human endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs) that is high yield is crucial for their implementation in ischemia. Our lab has developed an isolation protocol to do this using full-term human villous placental tissue. This protocol describes enzymatic tissue digestion followed by MACS and FACS, achieving an 8 times greater yield versus traditional isolation techniques and delivering pure fetal stem cell colonies within 21-28 days cell culture. For complete details on the use and execution of this protocol, please refer to Patel et al. (2013) and Patel et al. (2014).


Assuntos
Células-Tronco Mesenquimais , Placenta , Técnicas de Cultura de Células/métodos , Células Endoteliais , Feminino , Feto , Humanos , Gravidez
12.
J Heart Lung Transplant ; 41(8): 1032-1043, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35641425

RESUMO

BACKGROUND: Ventricular assist device (VAD) driveline exit site infection is a common complication. 3D scaffolds manufactured with highly homogeneous pores via melt electro-writing (MEW) may generate an improved skin-driveline interface which permits cellular in-growth and creates a barrier to prevent bacterial migration along the driveline tissue tunnel. This study investigated skin integration on segments of Heartmate 3 driveline: smooth polyurethane, velour, and on a custom MEW scaffold in a small animal model. METHODS: Drivelines with surfaces consisting of smooth polyurethane, velour bonded to smooth polyurethane, and smooth polyurethane with a MEW scaffold sleeve were implanted percutaneously in the dorsum of 42 rats. Each rat was implanted with 2 pieces of driveline of 2 cm in length. Skin integration was assessed after 7 and 14 days. RESULTS: Macroscopically, velour and MEW scaffold surfaces were anchored at the driveline-skin interface while smooth polyurethane samples were not attached. The histology analyses showed epidermal migration throughout the thickness of the velour and MEW scaffold groups. Evident tissue growth around single MEW scaffold fibers resulted in full coverage of the pores, while areas of compacted fibers were apparent in the velour group. Tissue ingrowth was significantly higher in the MEW group compared to the velour group after 7 (p < 0.0001) and 14 days (p < 0.0001). Marsupialization was observed in the smooth polyurethane samples. Mechanical pull-out forces were similar between velour and MEW scaffold groups at 7 and 14 days (p > 0.05). CONCLUSIONS: Velour and MEW scaffolds promoted epidermal integration while smooth polyurethane drivelines did not. Fine control of MEW scaffold structure production resulted in full cellular coverage and may reduce driveline infection.


Assuntos
Coração Auxiliar , Infecções Relacionadas à Prótese , Animais , Coração Auxiliar/efeitos adversos , Poliuretanos , Infecções Relacionadas à Prótese/etiologia , Ratos
13.
Tissue Eng Part C Methods ; 28(3): 113-126, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172639

RESUMO

Skin is a multilayer organ consisting of several tissues and appendages residing in a complex niche. Adequate and physiologically regulated vascularization is an absolute requirement for skin homeostasis, regeneration, and wound healing. The lack of vascular networks and ischemia results in delayed wound closure. In addition, vascularization is critical for the prolonged function and survival of skin grafts and tissue-engineered skin substitutes. This study highlights the clinical challenges associated with the limited vascularization in the cutaneous wounds. Then, we highlight the novel approaches for the development of vascular networks in the skin autografts, allografts, and artificial substitutes. Also, the future directions to overcome the existing vascularization complications in skin grafting and synthetic skin substitutes are presented. Statement of Significance Delayed closure of large dermal wounds, such as burn injuries, results from the lack of vascular networks and ischemia. The amount of blood supply in the skin graft is the primary factor determining the quality of the transplanted grafts. The current skin grafts and their fabrication methods lack the appropriate features that contribute to the vascularization and integration of the wound bed and graft and adherence to the skin layers. Therefore, the new generation of skin grafts should consider advanced technologies to induce vascularization and overcome current challenges.


Assuntos
Transplante de Pele , Pele Artificial , Pele/irrigação sanguínea , Transplante de Pele/métodos , Engenharia Tecidual/métodos , Cicatrização/fisiologia
14.
Bone ; 158: 116018, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023543

RESUMO

Current xenograft animal models fail to accurately replicate the complexity of human bone disease. To gain translatable and clinically valuable data from animal models, new in vivo models need to be developed that mimic pivotal aspects of human bone physiology as well as its diseased state. Above all, an advanced bone disease model should promote the development of new treatment strategies and facilitate the conduction of common clinical interventional procedures. Here we describe the development and characterisation of an orthotopic humanised tissue-engineered osteosarcoma (OS) model in a recently genetically engineered x-linked severe combined immunodeficient (X-SCID) rat. For the first time in a genetically modified rat, our results show the successful implementation of an orthotopic humanised tissue-engineered bone niche supporting the growth of a human OS cell line including its metastatic spread to the lung. Moreover, we studied the inter- and intraspecies differences in ultrastructural composition of bone and calcified tissue produced by the tumour, pointing to the crucial role of humanised animal models.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Osteossarcoma/tratamento farmacológico , Ratos , Engenharia Tecidual
15.
Commun Biol ; 4(1): 1014, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462519

RESUMO

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, and bone is the most frequent site of metastasis. The tumor microenvironment (TME) impacts tumor growth and metastasis, yet the role of the TME in PCa metastasis to bone is not fully understood. We used a tissue-engineered xenograft approach in NOD-scid IL2Rγnull (NSG) mice to incorporate two levels of humanization; the primary tumor and TME, and the secondary metastatic bone organ. Bioluminescent imaging, histology, and immunohistochemistry were used to study metastasis of human PC-3 and LNCaP PCa cells from the prostate to tissue-engineered bone. Here we show pre-seeding scaffolds with human osteoblasts increases the human cellular and extracellular matrix content of bone constructs, compared to unseeded scaffolds. The humanized prostate TME showed a trend to decrease metastasis of PC-3 PCa cells to the tissue-engineered bone, but did not affect the metastatic potential of PCa cells to the endogenous murine bones or organs. On the other hand, the humanized TME enhanced LNCaP tumor growth and metastasis to humanized and murine bone. Together this demonstrates the importance of the TME in PCa bone tropism, although further investigations are needed to delineate specific roles of the TME components in this context.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Engenharia Tecidual , Microambiente Tumoral , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica
16.
Small ; 17(41): e2101384, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313003

RESUMO

Large skin wounds pose a major clinical challenge. Scarcity of donor site and postsurgical scarring contribute to the incomplete or partial loss of function and aesthetic concerns in skin wound patients. Currently, a wide variety of skin grafts are being applied in clinical settings. Scaffolds are used to overcome the issues related to the misaligned architecture of the repaired skin tissues. The current review summarizes the contribution of biomaterials to wound healing and skin regeneration and addresses the existing limitations in skin grafting. Then, the clinically approved biologic and synthetic skin substitutes are extensively reviewed. Next, the techniques for modification of skin grafts aiming for enhanced tissue regeneration are outlined, and a summary of different growth factor delivery systems using biomaterials is presented. Considering the significant progress in biomaterial science and manufacturing technologies, the idea of biomaterial-based skin grafts with the ability for scarless wound healing and reconstructing full skin organ is more achievable than ever.


Assuntos
Pele Artificial , Pele , Materiais Biocompatíveis , Cicatriz , Humanos , Cicatrização
17.
Adv Healthc Mater ; 10(16): e2100477, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174163

RESUMO

The universal increase in the number of patients with nonhealing skin wounds imposes a huge social and economic burden on the patients and healthcare systems. Although, the application of traditional wound dressings contributes to an effective wound healing outcome, yet, the complexity of the healing process remains a major health challenge. Recent advances in materials and fabrication technologies have led to the fabrication of dressings that provide proper conditions for effective wound healing. The 3D-printed wound dressings, biomolecule-loaded dressings, as well as smart and flexible bandages are among the recent alternatives that have been developed to accelerate wound healing. Additionally, the new generation of wound dressings contains a variety of microelectronic sensors for real-time monitoring of the wound environment and is able to apply required actions to support the healing progress. Moreover, advances in manufacturing flexible microelectronic sensors enable the development of the next generation of wound dressing substrates, known as electronic skin, for real-time monitoring of the whole physiochemical markers in the wound environment in a single platform. The current study reviews the importance of smart wound dressings as an emerging strategy for wound care management and highlights different types of smart dressings for promoting the wound healing process.


Assuntos
Bandagens , Cicatrização , Humanos , Pele
18.
Stem Cells Transl Med ; 10(1): 27-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820868

RESUMO

Current therapies for novel coronavirus disease (COVID-19) are generally used to manage rather than cure this highly infective disease. Therefore, there is a significant unmet medical need for a safe and effective treatment for COVID-19. Inflammation is the driving force behind coronavirus infections, and the majority of deaths caused by COVID-19 are the result of acute respiratory distress syndrome (ARDS). It is crucial to control the inflammation as early as possible. To date, numerous studies have been conducted to evaluate the safety and efficacy of tissue engineering and regenerative medicine (TERM) products, including mesenchymal stem cells (MSCs), and their derivatives (eg, exosomes) for coronavirus infections, which could be applied for the COVID-19. In this review, first, the impacts of the COVID-19 pandemic in the present and future of TERM research and products are briefly presented. Then, the recent clinical trials and the therapeutic benefits of MSCs in coronavirus-induced ARDS are critically reviewed. Last, recent advances in the field of tissue engineering relevant to coronavirus infections, including three-dimensional platforms to study the disease progression and test the effects of antiviral agents, are described. Moreover, the application of biomaterials for vaccine technology and drug delivery are highlighted. Despite promising results in the preclinical and clinical applications of MSC therapy for coronavirus infections, controversy still exists, and thus further investigation is required to understand the efficacy of these therapies.


Assuntos
COVID-19/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , COVID-19/complicações , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2
19.
Shock ; 55(4): 423-440, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826813

RESUMO

ABSTRACT: Sepsis is a life-threatening disorder that is caused by a dysregulated inflammatory response during an infection. The disease mostly affects pregnant women, newborns, and patients in intensive care units. Sepsis treatment is a significant part of a country's health budgets. Delay in the therapy causes irreversible failure of various organs due to the lack of blood supply and reduction of oxygen in the tissues and eventually increased mortality. The involvement of four or five organs by sepsis has been attributed to an increased risk of death to over 90%. Although antibiotics are at the first line of sepsis treatment, they do not possess enough potency to control the disease and prevent subsequent organ failure. The immunomodulatory, anti-inflammatory, anti-apoptotic, and anti-microbial properties of mesenchymal stem cells (MSCs) have been reported in various studies. Therefore, the application of MSCs has been considered a potentially promising therapeutic strategy. In preclinical studies, the administration of MSCs has been associated with reduced bacterial load and decreased levels of pro-inflammatory factors as well as the improved function of the different vital organs, including heart, kidney, liver, and lungs. The current study provides a brief review of sepsis and its pathophysiology, and then highlights recent findings in the therapeutic effects of MSCs and MSC-derived secretome in improving sepsis-induced organ dysfunction. Besides, eligible sepsis candidates for MSC-therapy and the latest clinical findings in these areas have been reviewed.


Assuntos
Imunomodulação , Transplante de Células-Tronco Mesenquimais , Insuficiência de Múltiplos Órgãos/prevenção & controle , Sepse/imunologia , Sepse/cirurgia , Humanos , Inflamação/etiologia , Inflamação/prevenção & controle , Insuficiência de Múltiplos Órgãos/etiologia , Sepse/complicações
20.
Biomaterials ; 268: 120558, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307369

RESUMO

Biomimetically designed medical-grade polycaprolactone (mPCL) dressings are 3D-printed with pore architecture and anisotropic mechanical characteristics that favor skin wound healing with reduced scarring. Melt electrowritten mPCL dressings are seeded with human gingival tissue multipotent mesenchymal stem/stromal cells and cryopreserved using a clinically approved method. The regenerative potential of fresh or frozen cell-seeded mPCL dressing is compared in a splinted full-thickness excisional wound in a rat model over six weeks. The application of 3D-printed mPCL dressings decreased wound contracture and significantly improved skin regeneration through granulation and re-epithelialization compared to control groups. Combining 3D-printed biomimetic wound dressings and precursor cell delivery enhances physiological wound closure with reduced scar tissue formation.


Assuntos
Células-Tronco Adultas , Cicatrização , Animais , Bandagens , Biomimética , Impressão Tridimensional , Ratos , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA