Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(16): e36489, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253143

RESUMO

The accurate evaluation of the effective mechanical properties of composites mainly depends on the characteristics of representative volume elements (RVEs). This paper mainly investigates the RVE size. Additionally, the effect of volume fraction of reinforcement, the edge effect, and RVE types on the critical size are discussed. First, the Al/Ni multilayered composites were processed by nine cycles of the cross-accumulative roll bonding (CARB) method. Then, one type of RVEs was created based on cross-sectional micrographs of composites to consider their inhomogeneities. Another type was generated by using the random sequential adsorption (RSA) procedure. Thereafter, the homogenized effective elastic properties of both types of microstructure-based RVEs and RSA-based RVEs were computed and compared as a function of the volume fraction of Ni and RVE size. The results showed that by increasing the Ni fragments, the RVEs indicated stiffer elastic behavior. By increasing the volume fraction of Ni from 0.2 Vf to 0.8 Vf, the Poisson ratio decreased by 7 % and the elastic modulus increased by 83 % for RSA-based RVE. Regarding the size of microstructure-based RVE of Al/Ni (0.8 Vf), from the largest size (size 1) with a length of 575 µm and a width of 575 µm to the smallest size (size 5) with a length of 287.5 µm and a width of 287.5 µm, the elastic modulus and the Poisson ratio showed 16 % and 0.8 % decrease, respectively.

2.
Environ Pollut ; 326: 121468, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958654

RESUMO

This work systematically describes arsenic mobility and potential bioaccessibility of arsenic-enriched titanium dioxide water treatment residuals (TiO2 WTRs) by employing a suite of wet chemical experiments and spectroscopic measurements. Specifically, Environmental Protection Agency (EPA) digestion method 3051a indicated <3% of total arsenic in the solid phase was released, and arsenic assessed by EPA method 1340 for bioaccessibility was below detection limits. A novel finding is while the arsenic appeared to be stable under highly acidic digestion conditions, it is in fact highly mobile when exposed to simple phosphate solutions. On average, 55% of arsenic was extracted from all samples during a 50-day replenishment study. This was equivalent to 169 mg kg-1 arsenic released from the solid phase. Macroscopic desorption experiments indicated arsenic likely formed inner-sphere bonds with the TiO2 particles present in the samples. This was confirmed with X-ray absorption spectroscopy (XAS), where an interatomic distance of 3.32 Å and a coordination number (CN) of 1.79 titanium atoms were determined. This translates to a configuration of arsenic on TiO2 surfaces as a bidentate binuclear inner-sphere complex. Thus, both macroscopic and spectroscopic data are in agreement. During incubation experiments, arsenic(V) was actively reduced to arsenic(III); the amount of arsenic(III) in solution varied from 8 to 38% of total dissolved arsenic. Lastly, elevated concentrations and mobility of vanadium in these systems merit further investigation. The high mobility of arsenic and its potential for reduction when reintroduced into the environment, particularly in agriculturally important areas, presents an important risk when waste products are not properly managed.


Assuntos
Arsênio , Purificação da Água , Arsênio/química , Titânio/química , Adsorção , Purificação da Água/métodos , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA