Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Med Insights Oncol ; 18: 11795549241260534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911453

RESUMO

Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38807355

RESUMO

Theranostics refers to the combination of diagnostic biomarkers with therapeutic agents that share a specific target expressed by diseased cells and tissues. Nuclear medicine is an exciting component explored for its applicability in theranostic concepts in clinical and research investigations. Nuclear theranostics is based on the employment of radioactive compounds delivering ionizing radiation to diagnose and manage certain diseases employing binding with specifically expressed targets. In the realm of personalized medicine, nuclear theranostics stands as a beacon of potential, potentially revolutionizing disease management. Studies exploring the theranostic profile of radioactive compounds have been presented in this review along with a detailed explanation of radioactive compounds and their theranostic applicability in several diseases. It furnishes insights into their applicability across diverse diseases, elucidating the intricate interplay between these compounds and disease pathologies. Light is shed on the important milestones of nuclear theranostics beginning with radioiodine therapy in thyroid carcinomas, MIBG labelled with iodine in neuroblastoma, and several others. Our perspectives have been put forth regarding the most important theranostic agents along with emerging trends and prospects.

3.
Cureus ; 16(3): e56509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646204

RESUMO

AIM: To assess and contrast the effectiveness of systemic doxycycline and diode laser as supplements to scaling and root planing (SRP) in terms of clinical and microbiological parameters. MATERIALS AND METHODS: A total of 33 patients diagnosed with periodontitis stages II and III were included and randomized into group A (SRP + diode laser), group B (SRP + doxycycline), and group C (SRP alone). Selected sites were assessed for clinical and microbial parameters-plaque index (PI), gingival index (GI), pocket probing depth (PPD), relative attachment level (RAL), and colony-forming units (CFUs). Every clinical parameter was noted at baseline and after three months. The arithmetic mean, followed by the standard deviation, was calculated for the required assessment intervals. Analysis of variance (ANOVA) was used to compare all parameters between groups, and if the results of the ANOVA test were significant, post hoc analysis was performed. For intragroup comparison, student t-tests were performed. RESULTS: The clinical parameters significantly improved within three months for all groups. In terms of relative attachment level, a statistically significant difference (P < 0.001) was obtained at the three-month interval compared to the baseline value, with the most statistically significant difference seen in group A (3.36±0.50 to 0.64±0.50), followed by group B (3.18±0.40 to 2.18±0.40). The mean pocket probing depth observed at three months, compared to the baseline value, showed a statistically significant difference (P < 0.001) in group A (5.91±0.70 to 2.18±0.40) compared to group B (6.18±0.75 to 4.36±0.50), followed by group C (5.82±0.75 to 5.27±0.64). CONCLUSION: The use of diode laser-assisted pocket disinfection and systemic doxycycline, in addition to scaling and root planing, has proven to be efficient for treating periodontal pockets.

4.
Mol Cell ; 83(24): 4445-4460.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37995689

RESUMO

The metazoan-specific Integrator complex catalyzes 3' end processing of small nuclear RNAs (snRNAs) and premature termination that attenuates the transcription of many protein-coding genes. Integrator has RNA endonuclease and protein phosphatase activities, but it remains unclear if both are required for complex function. Here, we show IntS6 (Integrator subunit 6) over-expression blocks Integrator function at a subset of Drosophila protein-coding genes, although having no effect on snRNAs or attenuation of other loci. Over-expressed IntS6 titrates protein phosphatase 2A (PP2A) subunits, thereby only affecting gene loci where phosphatase activity is necessary for Integrator function. IntS6 functions analogous to a PP2A regulatory B subunit as over-expression of canonical B subunits, which do not bind Integrator, is also sufficient to inhibit Integrator activity. These results show that the phosphatase module is critical at only a subset of Integrator-regulated genes and point to PP2A recruitment as a tunable step that modulates transcription termination efficiency.


Assuntos
Proteínas de Drosophila , Terminação da Transcrição Genética , Animais , RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
5.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577539

RESUMO

Background: Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods: We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results: ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions: Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.

6.
Med Oncol ; 40(7): 200, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294501

RESUMO

Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas de DNA , Humanos , Vacinas de DNA/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Microambiente Tumoral
7.
Med Oncol ; 40(5): 135, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014489

RESUMO

Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Humanos , Neoplasias/prevenção & controle , Antígenos de Neoplasias , Imunoterapia/métodos , Antineoplásicos/farmacologia
8.
Cell Rep Med ; 4(5): 101024, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37119814

RESUMO

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.


Assuntos
COVID-19 , Vírus Chikungunya , Vírus de RNA , Infecção por Zika virus , Zika virus , Animais , Camundongos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus Chikungunya/fisiologia , Imunidade Inata
9.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711787

RESUMO

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.

10.
Med Oncol ; 40(1): 48, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520261

RESUMO

Triple negative breast cancer (TNBC) portraying deficient expression of estrogen receptor (ER), progesterone receptor (PR) and Human epidermal growth factor receptor 2 (HER2) is known to be the most aggressive subtype associated with poor prognosis and interventional strategies limited to chemotherapy and breast conserving surgery. Some TNBC incidences have also been reported with positive circ-HER2 expression thus rendering circ-HER2 a potential immunotherapy target to direct drug development. Resistance and recurrence reported with traditional approaches has led us towards the application of immunotherapeutic interventions owing to their anti-tumor efficacy. This review provides an elaborative insight on potential molecular biomarkers to be targeted by immunotherapy. Additionally, clinical trials proposing the application of immunotherapy in neoadjuvant, adjuvant and metastatic TNBC setting have also been included. The gathered evidence indicates a positive application of immunotherapy in TNBC with therapeutic limitation available only owing to the possibility of adverse events which can be dealt considering risk-to-benefit ratio. Furthermore, potential targets to aim for therapeutic vaccines along with evidence from clinical trials have also been mentioned.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Imunoterapia , Receptores de Estrogênio/metabolismo , Terapia Neoadjuvante
11.
Med Oncol ; 40(1): 25, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456774

RESUMO

Triple-negative breast cancer (TNBC) showcases a labyrinthine network exhibiting deficient expression of Estrogen receptor (ER), Progesterone receptor (PR), and Human-epidermal growth factor receptor-2 (HER2). This restricts the conventional chemotherapeutic, hormonal, and few targeted regimens in showing efficient anti-tumor response. Antibody-drug conjugates (ADCs) are target-specific conjugates comprising a monoclonal antibody attached to the desired cytotoxic payload with the support of a stable linker. They are designated as one of the encouraging sets of targeted therapies that have unveiled affirmative outcomes owing to increased specificity in targeting the undetectable or deficiently expressed targets. Another virtue of ADCs lending superiority to this approach is the presence of inherent bystander effect which has a detrimental influence on the tumor microenvironment (TME) devoid of antigen expression. In the current scenario, FDA-approved Sacituzumab govitecan is widely being utilized to mitigate TNBC while many other ADCs are being studied in clinical trials. Additionally, a focus has been set on revelation of application of Trastuzumab deruxtecan in HER2-low metastatic breast cancer which widens the current therapeutic horizon dealing with such carcinomas. After making an effort towards sketching ADCs profile, we conclude that this novel approach deserves to be investigated through future campaigns owing to its remarkable bystander effect, ability to precisely recognize the antigen and spare the naïve cells from detrimental toxicity. Exploration of the remarkable potential of Sacituzumab govitecan in multiple indications including TNBC portrays the prominence of ADCs and prompts the bright future of this therapeutic approach. In this review, we present the basic foundation of ADCs alongside summarizing the building blocks of several ADCs used in TNBC. Furthermore, by shedding light on the therapeutic regimens and concomitant effects of various ADCs derived from the supportive backbone of clinical trials, we have attempted to convene several segments of ADCs and portray their potentialities time ahead.


Assuntos
Carcinoma , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Receptores de Estrogênio , Efeito Espectador , Microambiente Tumoral
12.
Biol Open ; 11(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35451474

RESUMO

Hepatoblastoma (HB) is the most common pediatric primary liver malignancy, and survival for high-risk disease approaches 50%. Mouse models of HB fail to recapitulate hallmarks of high-risk disease. The aim of this work was to generate murine models that show high-risk features including multifocal tumors, vascular invasion, metastasis, and circulating tumor cells (CTCs). HepT1 cells were injected into the livers or tail veins of mice, and tumor growth was monitored with magnetic resonance and bioluminescent imaging. Blood was analyzed with fluorescence-activated cell sorting to identify CTCs. Intra- and extra-hepatic tumor samples were harvested for immunohistochemistry and RNA and DNA sequencing. Cell lines were grown from tumor samples and profiled with RNA sequencing. With intrahepatic injection of HepT1 cells, 100% of animals grew liver tumors and showed vascular invasion, metastasis, and CTCs. Mutation profiling revealed genetic alterations in seven cancer-related genes, while transcriptomic analyses showed changes in gene expression with cells that invade vessels. Tail vein injection of HepT1 cells resulted in multifocal, metastatic disease. These unique models will facilitate further meaningful studies of high-risk HB. This article has an associated First Person interview with the first author of the paper.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos
13.
Mol Ther Oncolytics ; 25: 57-68, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35399604

RESUMO

Most advanced-stage ovarian cancer patients, including those with epithelial ovarian cancer (EOC), develop recurrent disease and acquisition of resistance to chemotherapy, leading to limited treatment options. Decrease in Let7b miRNA levels in clinical ovarian cancer has been associated with chemoresistance, increased proliferation, invasion, and relapse in EOC. We have established a murine EOC relapsed model by administering paclitaxel (PTX) and stopping therapy to allow for tumor regrowth. Global microRNA profiling in the relapsed tumor showed significant downregulation of Let7b relative to untreated tumors. Here, we report the use of hyaluronic acid (HA)-based nanoparticle formulation that can deliver Let7b miRNA mimic to tumor cells and achieve cellular programming both in vitro and in vivo. We demonstrate that a therapeutic combination of Let7b miRNA and PTX leads to significant improvement in anti-tumor efficacy in the relapsed model of EOC. We further demonstrate that the combination therapy is safe for repeated administration. This novel approach of cellular reprogramming of tumor cells using clinically relevant miRNA mimic in combination with chemotherapy could enable more effective therapeutic outcomes for patients with advanced-stage relapsed EOC.

15.
Methods Mol Biol ; 2285: 131-139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928549

RESUMO

A critical property of T cells when activated by their cognate antigen-MHC complex is the initiation of cell cycle activity and clonal expansion. In this chapter, we describe how the proliferation of T cells can be assessed on the single cell level by flow cytometry and how this can be used to identify and potentially isolate antigen-reactive T cells.


Assuntos
Antígenos , Proliferação de Células , Citometria de Fluxo , Ativação Linfocitária , Ovalbumina/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Linfócitos T/imunologia , Animais , Separação Celular , Células Cultivadas , Corantes Fluorescentes/metabolismo , Humanos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Projetos de Pesquisa , Baço/citologia , Linfócitos T/metabolismo , Fluxo de Trabalho
16.
Sci Rep ; 11(1): 2967, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536467

RESUMO

Hepatoblastoma (HB) is the most common pediatric liver malignancy. High-risk patients have poor survival, and current chemotherapies are associated with significant toxicities. Targeted therapies are needed to improve outcomes and patient quality of life. Most HB cases are TP53 wild-type; therefore, we hypothesized that targeting the p53 regulator Murine double minute 4 (MDM4) to reactivate p53 signaling may show efficacy. MDM4 expression was elevated in HB patient samples, and increased expression was strongly correlated with decreased expression of p53 target genes. Treatment with NSC207895 (XI-006), which inhibits MDM4 expression, or ATSP-7041, a stapled peptide dual inhibitor of MDM2 and MDM4, showed significant cytotoxic and antiproliferative effects in HB cells. Similar phenotypes were seen with short hairpin RNA (shRNA)-mediated inhibition of MDM4. Both NSC207895 and ATSP-7041 caused significant upregulation of p53 targets in HB cells. Knocking-down TP53 with shRNA or overexpressing MDM4 led to resistance to NSC207895-mediated cytotoxicity, suggesting that this phenotype is dependent on the MDM4-p53 axis. MDM4 inhibition also showed efficacy in a murine model of HB with significantly decreased tumor weight and increased apoptosis observed in the treatment group. This study demonstrates that inhibition of MDM4 is efficacious in HB by upregulating p53 tumor suppressor signaling.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Hepatoblastoma/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Oxidiazóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Pré-Escolar , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hepatoblastoma/genética , Hepatoblastoma/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Oxidiazóis/uso terapêutico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Soc Psychiatry ; 65(2): 151-157, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30744449

RESUMO

BACKGROUND: Problematic Internet use (PIU) is the inability of individuals to control their Internet use, resulting in marked distress and/or functional impairment in daily life. AIM/OBJECTIVE: We assessed the frequency of PIU and predictors of PIU, including social anxiety disorder (SAD), quality of sleep, quality of life and Internet-related demographic variables among school going adolescents. METHODS: This was an observational, single-centered, cross-sectional, questionnaire-based study of 1,312 school going adolescents studying in Grades 10, 11 and 12 in Bhavnagar, India. Every participant was assessed by a pro forma containing demographic details, questionnaires of Internet Addiction Test (IAT), Social Phobia Inventory (SPIN), Pittsburgh Sleep Quality Index (PSQI) and Satisfaction With Life Scale (SWLS) for PIU severity, SAD severity, Quality of Sleep assessment and Quality of Life assessment, respectively. The statistical analysis was done with SPSS Version 23 (IBM Corporation) using chi-square test, Student's t test and Pearson's correlation. Multiple linear regression analysis was applied to find the predictors of PIU. RESULTS: We found frequency of PIUs as 16.7% and Internet addiction as 3.0% among school going adolescents. Participants with PIU are more likely to experience SAD ( p < .0001), poor quality of sleep ( p < .0001) and poor quality of life ( p < .0001). There is positive correlation between severity of PIU and SAD ( r = .411, p < .0001). Linear regression analysis shows PIU can be predicted by SAD, sleep quality, quality of life, English medium, male gender, total duration of Internet use, monthly cost of Internet use, education, social networking, gaming, online shopping and entertainment as purpose of Internet use. CONCLUSION: Participants with PIU are more likely to experience SAD, poor quality of sleep and poor quality of life.


Assuntos
Comportamento do Adolescente , Comportamento Aditivo/epidemiologia , Internet/estatística & dados numéricos , Rede Social , Estudantes/estatística & dados numéricos , Adolescente , Estudos Transversais , Feminino , Humanos , Índia , Modelos Lineares , Masculino , Qualidade de Vida , Instituições Acadêmicas , Sono , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA