Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PeerJ Comput Sci ; 10: e1813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435563

RESUMO

Background: Blood diseases such as leukemia, anemia, lymphoma, and thalassemia are hematological disorders that relate to abnormalities in the morphology and concentration of blood elements, specifically white blood cells (WBC) and red blood cells (RBC). Accurate and efficient diagnosis of these conditions significantly depends on the expertise of hematologists and pathologists. To assist the pathologist in the diagnostic process, there has been growing interest in utilizing computer-aided diagnostic (CAD) techniques, particularly those using medical image processing and machine learning algorithms. Previous surveys in this domain have been narrowly focused, often only addressing specific areas like segmentation or classification but lacking a holistic view like segmentation, classification, feature extraction, dataset utilization, evaluation matrices, etc. Methodology: This survey aims to provide a comprehensive and systematic review of existing literature and research work in the field of blood image analysis using deep learning techniques. It particularly focuses on medical image processing techniques and deep learning algorithms that excel in the morphological characterization of WBCs and RBCs. The review is structured to cover four main areas: segmentation techniques, classification methodologies, descriptive feature selection, evaluation parameters, and dataset selection for the analysis of WBCs and RBCs. Results: Our analysis reveals several interesting trends and preferences among researchers. Regarding dataset selection, approximately 50% of research related to WBC segmentation and 60% for RBC segmentation opted for manually obtaining images rather than using a predefined dataset. When it comes to classification, 45% of the previous work on WBCs chose the ALL-IDB dataset, while a significant 73% of researchers focused on RBC classification decided to manually obtain images from medical institutions instead of utilizing predefined datasets. In terms of feature selection for classification, morphological features were the most popular, being chosen in 55% and 80% of studies related to WBC and RBC classification, respectively. Conclusion: The diagnostic accuracy for blood-related diseases like leukemia, anemia, lymphoma, and thalassemia can be significantly enhanced through the effective use of CAD techniques, which have evolved considerably in recent years. This survey provides a broad and in-depth review of the techniques being employed, from image segmentation to classification, feature selection, utilization of evaluation matrices, and dataset selection. The inconsistency in dataset selection suggests a need for standardized, high-quality datasets to strengthen the diagnostic capabilities of these techniques further. Additionally, the popularity of morphological features indicates that future research could further explore and innovate in this direction.

2.
Front Public Health ; 11: 1301607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094231

RESUMO

The COVID-19 pandemic has greatly affected human behavior, creating a need for individuals to be more cautious about health and safety protocols. People are becoming more aware of their surroundings and the importance of minimizing the risk of exposure to potential sources of infection. This shift in mindset is particularly important in indoor environments, especially hospitals, where there is a greater risk of virus transmission. The implementation of route planning in these areas, aimed at minimizing interaction and exposure, is crucial for positively influencing individual behavior. Accurate maps of buildings help provide location-based services, prepare for emergencies, and manage infrastructural facilities. There aren't any maps available for most installations, and there are no proven techniques to categorize features within indoor areas to provide location-based services. During a pandemic like COVID-19, the direct connection between the masses is one of the significant preventive steps. Hospitals are the main stakeholders in managing such situations. This study presents a novel method to create an adaptive 3D model of an indoor space to be used for localization and routing purposes. The proposed method infuses LiDAR-based data-driven methodology with a Quantum Geographic Information System (QGIS) model-driven process using game theory. The game theory determines the object localization and optimal path for COVID-19 patients in a real-time scenario using Nash equilibrium. Using the proposed method, comprehensive simulations and model experiments were done using QGIS to identify an optimized route. Dijkstra algorithm is used to determine the path assessment score after obtaining several path plans using dynamic programming. Additionally, Game theory generates path ordering based on the custom scenarios and user preference in the input path. In comparison to other approaches, the suggested way can minimize time and avoid congestion. It is demonstrated that the suggested technique satisfies the actual technical requirements in real-time. As we look forward to the post-COVID era, the tactics and insights gained during the pandemic hold significant value. The techniques used to improve indoor navigation and reduce interpersonal contact within healthcare facilities can be applied to maintain a continued emphasis on safety, hygiene, and effective space management in the long term. The use of three-dimensional (3D) modeling and optimization methodologies in the long-term planning and design of indoor spaces promotes resilience and flexibility, encouraging the adoption of sustainable and safe practices that extend beyond the current pandemic.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Teoria dos Jogos , Pandemias/prevenção & controle , Hospitais , Algoritmos
3.
Front Public Health ; 11: 1323922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146469

RESUMO

Social media is a powerful communication tool and a reflection of our digital environment. Social media acted as an augmenter and influencer during and after COVID-19. Many of the people sharing social media posts were not actually aware of their mental health status. This situation warrants to automate the detection of mental disorders. This paper presents a methodology for the detection of mental disorders using micro facial expressions. Micro-expressions are momentary, involuntary facial expressions that can be indicative of deeper feelings and mental states. Nevertheless, manually detecting and interpreting micro-expressions can be rather challenging. A deep learning HybridMicroNet model, based on convolution neural networks, is proposed for emotion recognition from micro-expressions. Further, a case study for the detection of mental health has been undertaken. The findings demonstrated that the proposed model achieved a high accuracy when attempting to diagnose mental health disorders based on micro-expressions. The attained accuracy on the CASME dataset was 99.08%, whereas the accuracy that was achieved on SAMM dataset was 97.62%. Based on these findings, deep learning may prove to be an effective method for diagnosing mental health conditions by analyzing micro-expressions.


Assuntos
COVID-19 , Mídias Sociais , Humanos , COVID-19/psicologia , Saúde Mental , Saúde Pública , Emoções
4.
Front Public Health ; 11: 1308404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026271

RESUMO

COVID-19 is an epidemic disease that results in death and significantly affects the older adult and those afflicted with chronic medical conditions. Diabetes medication and high blood glucose levels are significant predictors of COVID-19-related death or disease severity. Diabetic individuals, particularly those with preexisting comorbidities or geriatric patients, are at a higher risk of COVID-19 infection, including hospitalization, ICU admission, and death, than those without Diabetes. Everyone's lives have been significantly changed due to the COVID-19 outbreak. Identifying patients infected with COVID-19 in a timely manner is critical to overcoming this challenge. The Real-Time Polymerase Chain Reaction (RT-PCR) diagnostic assay is currently the gold standard for COVID-19 detection. However, RT-PCR is a time-consuming and costly technique requiring a lab kit that is difficult to get in crises and epidemics. This work suggests the CIDICXR-Net50 model, a ResNet-50-based Transfer Learning (TL) method for COVID-19 detection via Chest X-ray (CXR) image classification. The presented model is developed by substituting the final ResNet-50 classifier layer with a new classification head. The model is trained on 3,923 chest X-ray images comprising a substantial dataset of 1,360 viral pneumonia, 1,363 normal, and 1,200 COVID-19 CXR images. The proposed model's performance is evaluated in contrast to the results of six other innovative pre-trained models. The proposed CIDICXR-Net50 model attained 99.11% accuracy on the provided dataset while maintaining 99.15% precision and recall. This study also explores potential relationships between COVID-19 and Diabetes.


Assuntos
COVID-19 , Diabetes Mellitus , Hiperglicemia , Pneumonia Viral , Humanos , Idoso , COVID-19/diagnóstico , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Aprendizado de Máquina
5.
Front Public Health ; 11: 1297909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920574

RESUMO

The intricate relationship between COVID-19 and diabetes has garnered increasing attention within the medical community. Emerging evidence suggests that individuals with diabetes may experience heightened vulnerability to COVID-19 and, in some cases, develop diabetes as a post-complication following the viral infection. Additionally, it has been observed that patients taking cough medicine containing steroids may face an elevated risk of developing diabetes, further underscoring the complex interplay between these health factors. Based on previous research, we implemented deep-learning models to diagnose the infection via chest x-ray images in coronavirus patients. Three Thousand (3000) x-rays of the chest are collected through freely available resources. A council-certified radiologist discovered images demonstrating the presence of COVID-19 disease. Inception-v3, ShuffleNet, Inception-ResNet-v2, and NASNet-Large, four standard convoluted neural networks, were trained by applying transfer learning on 2,440 chest x-rays from the dataset for examining COVID-19 disease in the pulmonary radiographic images examined. The results depicted a sensitivity rate of 98 % (98%) and a specificity rate of almost nightly percent (90%) while testing those models with the remaining 2080 images. In addition to the ratios of model sensitivity and specificity, in the receptor operating characteristics (ROC) graph, we have visually shown the precision vs. recall curve, the confusion metrics of each classification model, and a detailed quantitative analysis for COVID-19 detection. An automatic approach is also implemented to reconstruct the thermal maps and overlay them on the lung areas that might be affected by COVID-19. The same was proven true when interpreted by our accredited radiologist. Although the findings are encouraging, more research on a broader range of COVID-19 images must be carried out to achieve higher accuracy values. The data collection, concept implementations (in MATLAB 2021a), and assessments are accessible to the testing group.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , COVID-19/diagnóstico por imagem , Aprendizagem , Radiografia , Diabetes Mellitus/diagnóstico por imagem , Aprendizado de Máquina
7.
Front Plant Sci ; 14: 1283235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900739

RESUMO

Emerging in the realm of bioinformatics, plant bioinformatics integrates computational and statistical methods to study plant genomes, transcriptomes, and proteomes. With the introduction of high-throughput sequencing technologies and other omics data, the demand for automated methods to analyze and interpret these data has increased. We propose a novel explainable gradient-based approach EG-CNN model for both omics data and hyperspectral images to predict the type of attack on plants in this study. We gathered gene expression, metabolite, and hyperspectral image data from plants afflicted with four prevalent diseases: powdery mildew, rust, leaf spot, and blight. Our proposed EG-CNN model employs a combination of these omics data to learn crucial plant disease detection characteristics. We trained our model with multiple hyperparameters, such as the learning rate, number of hidden layers, and dropout rate, and attained a test set accuracy of 95.5%. We also conducted a sensitivity analysis to determine the model's resistance to hyperparameter variations. Our analysis revealed that our model exhibited a notable degree of resilience in the face of these variations, resulting in only marginal changes in performance. Furthermore, we conducted a comparative examination of the time efficiency of our EG-CNN model in relation to baseline models, including SVM, Random Forest, and Logistic Regression. Although our model necessitates additional time for training and validation due to its intricate architecture, it demonstrates a faster testing time per sample, offering potential advantages in real-world scenarios where speed is paramount. To gain insights into the internal representations of our EG-CNN model, we employed saliency maps for a qualitative analysis. This visualization approach allowed us to ascertain that our model effectively captures crucial aspects of plant disease, encompassing alterations in gene expression, metabolite levels, and spectral discrepancies within plant tissues. Leveraging omics data and hyperspectral images, this study underscores the potential of deep learning methods in the realm of plant disease detection. The proposed EG-CNN model exhibited impressive accuracy and displayed a remarkable degree of insensitivity to hyperparameter variations, which holds promise for future plant bioinformatics applications.

9.
J Org Chem ; 88(16): 12100-12104, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552623

RESUMO

An efficient method for the enantioselective synthesis of 2,3-dihydrofurans bearing a quaternary stereocenter has been developed via Pd-catalyzed asymmetric allylic cycloaddition and a retro-Dieckmann Fragmentation cascade. The asymmetric allylic cycloaddition of vinylethylene carbonates with 3-cyanochromone followed by base-assisted retro-Dieckmann fragmentation proceeded smoothly via a one-pot process to produce chiral 3,4-disubstituted 2,3-dihydrofurans in high yields with excellent enantioselectivities.

10.
Front Plant Sci ; 14: 1158933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025141

RESUMO

Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation.

11.
Sci Rep ; 13(1): 791, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646735

RESUMO

Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.


Assuntos
Aprendizado Profundo , Humanos , Raios X , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tórax/diagnóstico por imagem
12.
Ann Telecommun ; 78(3-4): 183-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35975177

RESUMO

Digital forensic analysis of videoconferencing applications has received considerable attention recently, owing to the wider adoption and diffusion of such applications following the recent COVID-19 pandemic. In this contribution, we present a detailed forensic analysis of Cisco WebEx which is among the top three videoconferencing applications available today. More precisely, we present the results of the forensic investigation of Cisco WebEx desktop client, web, and Android smartphone applications. We focus on three digital forensic areas, namely memory, disk space, and network forensics. From the extracted artifacts, it is evident that valuable user data can be retrieved from different data localities. These include user credentials, emails, user IDs, profile photos, chat messages, shared media, meeting information including meeting passwords, contacts, Advanced Encryption Standard (AES) keys, keyword searches, timestamps, and call logs. We develop a memory parsing tool for Cisco WebEx based on the extracted artifacts. Additionally, we identify anti-forensic artifacts such as deleted chat messages. Although network communications are encrypted, we successfully retrieve useful artifacts such as IPs of server domains and host devices along with message/event timestamps.

13.
Neural Comput Appl ; 35(11): 8017-8026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35017794

RESUMO

A lot of different methods are being opted for improving the educational standards through monitoring of the classrooms. The developed world uses Smart classrooms to enhance faculty efficiency based on accumulated learning outcomes and interests. Smart classroom boards, audio-visual aids, and multimedia are directly related to the Smart classroom environment. Along with these facilities, more effort is required to monitor and analyze students' outcomes, teachers' performance, attendance records, and contents delivery in on-campus classrooms. One can achieve more improvement in quality teaching and learning outcomes by developing digital twins in on-campus classrooms. In this article, we have proposed DeepClass-Rooms, a digital twin framework for attendance and course contents monitoring for the public sector schools of Punjab, Pakistan. DeepClassRooms is cost-effective and requires RFID readers and high-edge computing devices at the Fog layer for attendance monitoring and content matching, using convolution neural network for on-campus and online classes.

14.
Front Plant Sci ; 13: 1064854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507379

RESUMO

Bacteriosis is one of the most prevalent and deadly infections that affect peach crops globally. Timely detection of Bacteriosis disease is essential for lowering pesticide use and preventing crop loss. It takes time and effort to distinguish and detect Bacteriosis or a short hole in a peach leaf. In this paper, we proposed a novel LightWeight (WLNet) Convolutional Neural Network (CNN) model based on Visual Geometry Group (VGG-19) for detecting and classifying images into Bacteriosis and healthy images. Profound knowledge of the proposed model is utilized to detect Bacteriosis in peach leaf images. First, a dataset is developed which consists of 10000 images: 4500 are Bacteriosis and 5500 are healthy images. Second, images are preprocessed using different steps to prepare them for the identification of Bacteriosis and healthy leaves. These preprocessing steps include image resizing, noise removal, image enhancement, background removal, and augmentation techniques, which enhance the performance of leaves classification and help to achieve a decent result. Finally, the proposed LWNet model is trained for leaf classification. The proposed model is compared with four different CNN models: LeNet, Alexnet, VGG-16, and the simple VGG-19 model. The proposed model obtains an accuracy of 99%, which is higher than LeNet, Alexnet, VGG-16, and the simple VGG-19 model. The achieved results indicate that the proposed model is more effective for the detection of Bacteriosis in peach leaf images, in comparison with the existing models.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36441898

RESUMO

Recommending appropriate drugs to patients based on their history and symptoms is a complex real-world problem. Knowing whether a drug is useful without its consumption by a variety of people followed by proper evaluation is a challenge. Modern-day recommender systems can assist in this provided they receive large data to learn. Public reviews on various drugs are available for knowledge sharing. These reviews assist in recommending the best and most appropriate option to the user. The explicit feedback underpins the entire recommender system. This work develops a novel knowledge graph-based convolutional network for recommending drugs. The knowledge graph is coupled with sentiment analysis extracted from the public reviews on drugs to enhance drug recommendations. For each drug that has been used previously, sentiments have been analyzed to determine which one has the most effective reviews. The knowledge graph effectively captures user-item relatedness by mining its associated attributes. Experiments are performed on public benchmarks and a comparison is made with closely related state-of-the-art works. Based on the obtained results, the current work performs better than the past contributions by achieving up to 98.7% Area Under Curve (AUC) score.

16.
Comput Intell Neurosci ; 2022: 2557795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210985

RESUMO

Diabetes is a chronic disease that can cause several forms of chronic damage to the human body, including heart problems, kidney failure, depression, eye damage, and nerve damage. There are several risk factors involved in causing this disease, with some of the most common being obesity, age, insulin resistance, and hypertension. Therefore, early detection of these risk factors is vital in helping patients reverse diabetes from the early stage to live healthy lives. Machine learning (ML) is a useful tool that can easily detect diabetes from several risk factors and, based on the findings, provide a decision-based model that can help in diagnosing the disease. This study aims to detect the risk factors of diabetes using ML methods and to provide a decision support system for medical practitioners that can help them in diagnosing diabetes. Moreover, besides various other preprocessing steps, this study has used the synthetic minority over-sampling technique integrated with the edited nearest neighbor (SMOTE-ENN) method for balancing the BRFSS dataset. The SMOTE-ENN is a more powerful method than the individual SMOTE method. Several ML methods were applied to the processed BRFSS dataset and built prediction models for detecting the risk factors that can help in diagnosing diabetes patients in the early stage. The prediction models were evaluated using various measures that show the high performance of the models. The experimental results show the reliability of the proposed models, demonstrating that k-nearest neighbor (KNN) outperformed other methods with an accuracy of 98.38%, sensitivity, specificity, and ROC/AUC score of 98%. Moreover, compared with the existing state-of-the-art methods, the results confirm the efficacy of the proposed models in terms of accuracy and other evaluation measures. The use of SMOTE-ENN is more beneficial for balancing the dataset to build more accurate prediction models. This was the main reason it was possible to achieve models more accurate than the existing ones.


Assuntos
Diabetes Mellitus , Aprendizado de Máquina , Algoritmos , Diabetes Mellitus/diagnóstico , Diagnóstico Precoce , Humanos , Reprodutibilidade dos Testes , Fatores de Risco
17.
Front Plant Sci ; 13: 1031748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275583

RESUMO

Plants contribute significantly to the global food supply. Various Plant diseases can result in production losses, which can be avoided by maintaining vigilance. However, manually monitoring plant diseases by agriculture experts and botanists is time-consuming, challenging and error-prone. To reduce the risk of disease severity, machine vision technology (i.e., artificial intelligence) can play a significant role. In the alternative method, the severity of the disease can be diminished through computer technologies and the cooperation of humans. These methods can also eliminate the disadvantages of manual observation. In this work, we proposed a solution to detect tomato plant disease using a deep leaning-based system utilizing the plant leaves image data. We utilized an architecture for deep learning based on a recently developed convolutional neural network that is trained over 18,161 segmented and non-segmented tomato leaf images-using a supervised learning approach to detect and recognize various tomato diseases using the Inception Net model in the research work. For the detection and segmentation of disease-affected regions, two state-of-the-art semantic segmentation models, i.e., U-Net and Modified U-Net, are utilized in this work. The plant leaf pixels are binary and classified by the model as Region of Interest (ROI) and background. There is also an examination of the presentation of binary arrangement (healthy and diseased leaves), six-level classification (healthy and other ailing leaf groups), and ten-level classification (healthy and other types of ailing leaves) models. The Modified U-net segmentation model outperforms the simple U-net segmentation model by 98.66 percent, 98.5 IoU score, and 98.73 percent on the dice. InceptionNet1 achieves 99.95% accuracy for binary classification problems and 99.12% for classifying six segmented class images; InceptionNet outperformed the Modified U-net model to achieve higher accuracy. The experimental results of our proposed method for classifying plant diseases demonstrate that it outperforms the methods currently available in the literature.

18.
Org Biomol Chem ; 20(33): 6532-6536, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35880932

RESUMO

N 1-Substituted 1,2,4-triazoles are ubiquitous skeletons in medicinal agents, agrochemicals, and organic materials. Herein, an efficient and practical method for the synthesis of N1-allylated 1,2,4-triazoles via Pd-catalyzed allylic substitution of vinylethylene carbonates (VECs) with 1,2,4-triazoles has been developed. By using a catalyst generated in situ from Pd2(dba)3·CHCl3 and DPPE under mild conditions, the process allows rapid access to N1-allylated 1,2,4-triazoles bearing diverse functionalities in high yields with excellent N1-selectivities, linear-selectivities, and Z-stereoselectivities.


Assuntos
Paládio , Triazóis , Carbonatos , Catálise , Estereoisomerismo
19.
Comput Intell Neurosci ; 2022: 7893775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281185

RESUMO

With the current advancement in the Internet, there has been a growing demand for building intelligent and smart systems that can efficiently address the detection of health-related problems on social media, such as the detection of depression and anxiety. These types of systems, which are mainly dependent on machine learning techniques, must be able to deal with obtaining the semantic and syntactic meaning of texts posted by users on social media. The data generated by users on social media contains unstructured and unpredictable content. Several systems based on machine learning and social media platforms have recently been introduced to identify health-related problems. However, the text representation and deep learning techniques employed provide only limited information and knowledge about the different texts posted by users. This is owing to a lack of long-term dependencies between each word in the entire text and a lack of proper exploitation of recent deep learning schemes. In this paper, we propose a novel framework to efficiently and effectively identify depression and anxiety-related posts while maintaining the contextual and semantic meaning of the words used in the whole corpus when applying bidirectional encoder representations from transformers (BERT). In addition, we propose a knowledge distillation technique, which is a recent technique for transferring knowledge from a large pretrained model (BERT) to a smaller model to boost performance and accuracy. We also devised our own data collection framework from Reddit and Twitter, which are the most common social media sites. Finally, we employed word2vec and BERT with Bi-LSTM to effectively analyze and detect depression and anxiety signs from social media posts. Our system surpasses other state-of-the-art methods and achieves an accuracy of 98% using the knowledge distillation technique.


Assuntos
Saúde Mental , Mídias Sociais , Mineração de Dados/métodos , Humanos , Aprendizado de Máquina , Semântica
20.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35271012

RESUMO

Advancements in IoT technology have been instrumental in the design and implementation of various ubiquitous services. One such design activity was carried out by the authors of this paper, who proposed a novel cloud-centric IoT-based disaster management framework and developed a multimedia-based prototype that employed real-time geographical maps. The multimedia-based system can provide vital information on maps that can improve the planning and execution of evacuation tasks. This study was intended to explore the acceptance of the proposed technology by the specific set of users that could potentially lead to its adoption by rescue agencies for carrying out indoor rescue and evacuation operations. The novelty of this study lies in the concept that the acceptability of the proposed system was ascertained before the complete implementation of the system, which prevented potential losses of time and other resources. Based on the extended Technology Acceptance Model (TAM), we proposed a model included factors such as perceived usefulness, perceived ease of use, attitude, and behavioural intention. Other factors include trust in the proposed system, job relevance, and information requirement characteristics. Online survey data collected from the respondents were analyzed using structural equation modelling (SEM) revealed that although perceived ease of use and job relevance had significant impacts on perceived usefulness, trust had a somewhat milder impact on the same. The model also demonstrated a statistically moderate impact of trust and perceived ease of use on behavioural intention. All other relationships were statistically strong. Overall, all proposed relationships were supported, with the research model providing a better understanding of the perceptions of users towards the adoption of the proposed technology. This would be particularly useful while making decisions regarding the inclusion of various features during the industrial production of the proposed system.


Assuntos
Desastres , Tecnologia , Confidencialidade , Humanos , Software , Confiança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA