Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(9): 1881-1883, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926703

RESUMO

Coronavirus disease 2019 (COVID-19) has affected a broad demographics, eliciting a more significant effect on specific groups such as males, African Americans, and Hispanic minorities. Treatment of COVID-19 often requires antiviral drugs or monoclonal antibodies. However, immunotherapies such as mesenchymal stem cells and mesenchymal stem cells-derived exosomal vesicles should be evaluated as treatment options for COVID-19. Mesenchymal stem cell therapy offers regenerative, anti-inflammatory, and immunomodulatory properties that can speed up the recovery from COVID-19. Mesenchymal stem cell therapy can also benefit COVID-19 patients who suffer from strokes, as COVID-19 increases the risk of strokes due to increased cytokines and clotting factors. Most stroke cases that occur in COVID-19 patients are ischemic strokes. Therefore, with the help of mesenchymal stem cell therapy and mesenchymal stem cells-derived exosomes, COVID-19-induced stroke patients might benefit from dual-ended treatment. The objective of this review was to discuss COVID-19 and stroke incidence and the available treatment options.

2.
Neural Regen Res ; 17(8): 1717-1725, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017419

RESUMO

Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH's destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.

3.
Front Cell Dev Biol ; 9: 777805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881246

RESUMO

Type 1 diabetes (T1D) results from the destruction of pancreatic ß-cells caused by an altered immune balance in the pancreatic microenvironment. In humans as well as in mouse models, T cells are well recognized as key orchestrators of T1D, which is characterized by T helper (Th) 1 and Th17 cell bias and/or low/defective T-regulatory cells (Treg), and culminates in cytotoxic T-cell (CTL)-mediated destruction of ß-cells. Refitting of immune cells toward the non-inflammatory phenotype in the pancreas may represent a way to prevent/treat T1D. Recently we developed a unique spontaneous humanized mouse model of type 1 diabetes, wherein mouse MHC-II molecules were replaced by human DQ8, and ß-cells were made to express human glutamic acid decarboxylase (GAD) 65 auto-antigen. The mice spontaneously developed T1D resembling the human disease. Humanized T1D mice showed hyperglycemic (250-300 mg/dl) symptoms by the 4th week of life. The diabetogenic T cells (CD4, CD8) present in our model are GAD65 antigen-specific in nature. Intermolecular antigen spreading recorded during 3rd-6th week of age is like that observed in the human preclinical period of T1D. In this paper, we tested our hypothesis in our spontaneous humanized T1D mouse model. We targeted two cell-signaling pathways and their inhibitions: eIF5A pathway inhibition influences T helper cell dynamics toward the non-inflammatory phenotype and Notch signaling inhibition enrich Tregs and targets auto-reactive CTLs, rescues the pancreatic islet structure, and increases the functionality of ß-cells in terms of insulin production. We report that inhibition of (eIF5A + Notch) signaling mediates suppression of diabetogenic T cells by inducing plasticity in CD4 + T cells co-expressing IL-17 and IFNγ (IL-17 + IFNγ +) toward the Treg cells phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA