Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS One ; 11(11): e0166886, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861592

RESUMO

Bronchopulmonary dysplasia (BPD) is a major cause of neonatal morbidity in premature infants, occurring as a result of arrested lung development combined with multiple postnatal insults. Infants with BPD exposed to supplemental oxygen are at risk of retinopathy of prematurity as well. Thus, we studied the effects of hyperoxia on the retinal vasculature in a murine model of BPD. The retinal phenotype of this model, which we termed hyperoxia-induced proliferative retinopathy (HIPR), shows severe disruption of retinal vasculature and loss of vascular patterning, disorganized intra-retinal angiogenesis, inflammation and retinal detachment. Neonatal mice were subjected to 75% oxygen exposure from postnatal day (P)0 to P14 to model BPD, then allowed to recover in room air for 1 (P15), 7 (P21), or 14 days (P28). We quantified retinal thickness, protein levels of HIF-1α, NOX2, and VEGF, and examined the cellular locations of these proteins by immunohistochemistry. We examined the retinal blood vessel integrity and inflammatory markers, including macrophages (F4/80) and lymphocytes (CD45R). Compared to controls, normal retinal vascular development was severely disrupted and replaced by a disorganized sheet of intra-retinal angiogenesis in the HIPR mice. At all time-points, HIPR showed persistent hyaloidal vasculature and a significantly thinner central retina compared to controls. HIF-1α protein levels were increased at P15, while VEGF levels continued to increase until P21. Intra-retinal fibrinogen was observed at P21 followed by sub-retinal deposition in at P28. Inflammatory lymphocytes and macrophages were observed at P21 and P28, respectively. This model presents a severe phenotype of disrupted retinal vascular development, intra-retinal angiogenesis inflammation and retinal detachment.


Assuntos
Hiperóxia/metabolismo , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/metabolismo , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Retinite/genética , Retinite/metabolismo , Retinite/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vitreorretinopatia Proliferativa/patologia
3.
Invest Ophthalmol Vis Sci ; 57(9): OCT86-95, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27409510

RESUMO

PURPOSE: This study sought to determine the earliest time-point at which evidence of choroidal neovascularization (CNV) could be detected with visible-light optical coherence tomography angiography (vis-OCTA) in a mouse model of laser-induced CNV. METHODS: Visible light-OCTA was used to study laser-induced CNV at different time-points after laser injury to monitor CNV development and measure CNV lesion size. Measurements obtained from vis-OCTA angiograms were compared with histopathologic measurements from isolectin-stained choroidal flatmounts. RESULTS: Choroidal neovascularization area measurements between the vis-OCTA system and isolectin-stained choroidal flatmounts were significantly different in area for days 2 to 4 postlaser injury, and were not significantly different in area for days 5, 7, and 14. Choroidal neovascularization area measurements taken from the stained flatmounts were larger than their vis-OCTA counterparts for all time-points. Both modalities showed a similar trend of CNV size increasing from the day of laser injury until a peak of day 7 postlaser injury and subsequently decreasing by day 14. CONCLUSIONS: The earliest vis-OCTA can detect the presence of aberrant vessels in a mouse laser-induced CNV model is 5 days after laser injury. Visible light-OCTA was able to visualize the maximum of the CNV network 7 days postlaser injury, in accordance with choroidal flatmount immunostaining. Visible light-OCTA is a reliable tool in both detecting the presence of CNV development, as well as accurately determining the size of the lesion in a mouse laser-induced CNV model.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/diagnóstico , Angiofluoresceinografia/métodos , Luz , Tomografia de Coerência Óptica/métodos , Animais , Corioide/patologia , Modelos Animais de Doenças , Fundo de Olho , Fotocoagulação a Laser/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
4.
Opt Lett ; 40(24): 5782-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670511

RESUMO

Fluorescein angiography (FA) is the current clinical imaging standard for vascular related retinal diseases such as macular degeneration and diabetic retinopathy. However, FA is considered invasive and can provide only two-dimensional imaging. In comparison, optical coherence tomography angiography (OCTA) is noninvasive and can generate three-dimensional imaging; investigations of OCTA already demonstrated great promise in retinal vascular imaging. Yet, to further develop and apply OCTA, strengths and weaknesses between OCTA and FA need to be thoroughly compared. To avoid complications in image registration, an ideal comparison requires co-registered and simultaneous imaging by both FA and OCTA. In this Letter, we developed a system with integrated laser-scanning ophthalmoscope FA (SLO-FA) and OCTA, and conducted simultaneous dual-modality retinal vascular imaging in rodents. In imaging healthy rodent eyes, OCTA can resolve retinal capillaries better than SLO-FA does, particularly deep capillaries. In imaging rodent eyes with laser-induced choroidal neovascularization (CNV), OCTA can identify CNV that eludes SLO-FA detection.


Assuntos
Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/etiologia , Angiofluoresceinografia/métodos , Lasers/efeitos adversos , Retina/fisiopatologia , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Ratos
5.
J Vis Exp ; (106): e53502, 2015 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-26779879

RESUMO

The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.


Assuntos
Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Degeneração Macular/patologia , Animais , Lâmina Basilar da Corioide/patologia , Imunofluorescência , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA