Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microorganisms ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138150

RESUMO

Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.

2.
Microorganisms ; 11(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004764

RESUMO

Phleboviruses are classified into two main groups: the sandfly fever group (transmitted by sandflies and mosquitoes) and the Uukuniemi group (transmitted by ticks). Old World sandfly-borne viruses (SBVs) are classified into four main serocomplexes; sandfly fever Naples viruses (SFNVs), sandfly fever Sicilian viruses (SFSVs), Karimabad viruses (KARVs), and Salehabad viruses (SALVs). This study addresses current knowledge gaps on SBVs in Iran by focusing on identification and molecular epidemiology. We used PCR to examine DNA/RNA extracts to identify sandfly species and evaluate for SBV presence. We identified five specimens positive for phleboviruses: one Ph. sergenti for Tehran virus (TEHV), one Ph. papatasi for SFSV, and two Ph. papatasi and one Ph. perfiliewi for KARV. A phylogenetic tree indicated that the TEHV isolate from this study formed a cluster with previous isolates of TEHV, Zerdali virus, and Fermo virus. Meanwhile, the identified SFSV isolate fell in lineage I and was grouped with previous isolates of SFSVs and Dashli virus in Iran. Finally, the KARV isolates from this study formed a monophyletic clade in a sister relationship with other viruses in KARV lineages I and II. This comprehensive study on SBVs in Iran provided new insights into the molecular epidemiology of TEHV, SFSVs and KARVs in this country.

3.
Gene Rep ; 27: 101636, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35721780

RESUMO

Since the beginning of the of SARS-CoV-2 (Covid-19) pandemic, variants of concern (VOC) have emerged taxing health systems worldwide. In October 2020, a new variant of SARS-CoV-2 (B.1.617+/Delta variant) emerged in India, triggering a deadly wave of Covid-19. Epidemiological data strongly suggests that B.1.617+ is more transmissible and previous reports have revealed that B.1.617+ has numerous mutations compared to wild type (WT), including several changes in the spike protein (SP). The main goal of this study was to use In Silico (computer simulation) techniques to examine mutations in the SP, specifically L452R and E484Q (part of the receptor binding domain (RBD) for human angiotensin-converting enzyme 2 (hACE2)) and P681R (upstream of the Furin cleavage motif), for effects in modulating the transmissibility of the B.1.617+ variant. Using computational models, the binding free energy (BFE) and H-bond lengths were calculated for SP-hACE2 and SP-Furin complexes. Comparison of the SP-hACE2 complex in the WT and B.1.617+ revealed both complexes have identical receptor-binding modes but the total BFE of B.1.617+ binding was more favorable for complex formation than WT, suggesting L452R and E484Q have a moderate impact on binding affinity. In contrast, the SP-Furin complex of B.1.617+ substantially lowered the BFE and revealed changes in molecular interactions compared to the WT complex, implying stronger complex formation between the variant and Furin. This study provides an insight into mutations that modulate transmissibility of the B.1.617+ variant, specifically the P681R mutation which appears to enhance transmissibility of the B.1.617+ variant by rendering it more receptive to Furin.

4.
NPJ Vaccines ; 7(1): 49, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474311

RESUMO

The SARS-CoV-2 pandemic is an ongoing threat to global health, and wide-scale vaccination is an efficient method to reduce morbidity and mortality. We designed and evaluated two DNA plasmid vaccines, based on the pIDV-II system, expressing the SARS-CoV-2 spike gene, with or without an immunogenic peptide, in mice, and in a Syrian hamster model of infection. Both vaccines demonstrated robust immunogenicity in BALB/c and C57BL/6 mice. Additionally, the shedding of infectious virus and the viral burden in the lungs was reduced in immunized hamsters. Moreover, high-titers of neutralizing antibodies with activity against multiple SARS-CoV-2 variants were generated in immunized animals. Vaccination also protected animals from weight loss during infection. Additionally, both vaccines were effective at reducing both pulmonary and extrapulmonary pathology in vaccinated animals. These data show the potential of a DNA vaccine for SARS-CoV-2 and suggest further investigation in large animal and human studies could be pursued.

5.
Microorganisms ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576803

RESUMO

The global spread of ticks and various tick-borne viruses (TBVs) suggests the possibility of new tick-borne diseases emerging. Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging TBV of the Nairoviridae family that causes serious disease that can be fatal in humans. CCHFV endemic foci can be found in Africa, Asia, the Middle East, and South-Eastern Europe, and has spread to previously unaffected regions and nations, such as Spain, over the last two decades. In this review, we discuss the current situation of CCHFV in Asia, Africa and Europe based on existing knowledge, and we discuss driving factors in the distribution and transmission of the virus, such as the spread of tick vector species and host reservoirs.

6.
Microorganisms ; 9(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925854

RESUMO

One year since the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China, several variants of concern (VOC) have appeared around the world, with some variants seeming to pose a greater thread to public health due to enhanced transmissibility or infectivity. This study provides a framework for molecular characterization of novel VOC and investigates the effect of mutations on the binding affinity of the receptor-binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2) using in silico approach. Notable nonsynonymous mutations in RBD of VOC include the E484K and K417N/T that can be seen in South African and Brazilian variants, and N501Y and D614G that can be seen in all VOC. Phylogenetic analyses demonstrated that although the UK-VOC and the BR-VOC fell in the clade GR, they have different mutation signatures, implying an independent evolutionary pathway. The same is true about SA-VOC and COH-VOC felling in clade GH, but different mutation signatures. Combining molecular interaction modeling and the free energy of binding (FEB) calculations for VOC, it can be assumed that the mutation N501Y has the highest binding affinity in RBD for all VOC, followed by E484K (only for BR-VOC), which favors the formation of a stable complex. However, mutations at the residue K417N/T are shown to reduce the binding affinity. Once vaccination has started, there will be selective pressure that would be in favor of the emergence of novel variants capable of escaping the immune system. Therefore, genomic surveillance should be enhanced to find and monitor new emerging SARS-CoV-2 variants before they become a public health concern.

7.
Gene Rep ; 23: 101045, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33615041

RESUMO

In late 2019, a novel Coronavirus emerged in China. Perceiving the modulating factors of cross-species virus transmission is critical to elucidate the nature of virus emergence. Using bioinformatics tools, we analyzed the mapping of the SARS-CoV-2 genome, modeling of protein structure, and analyze the evolutionary origin of SARS-CoV-2, as well as potential recombination events. Phylogenetic tree analysis shows that SARS-CoV-2 has the closest evolutionary relationship with Bat-SL-CoV-2 (RaTG13) at the scale of the complete virus genome, and less similarity to Pangolin-CoV. However, the Receptor Binding Domain (RBD) of SARS-CoV-2 is almost identical to Pangolin-CoV at the aa level, suggesting that spillover transmission probably occurred directly from pangolins, but not bats. Further recombination analysis revealed the pathway for spillover transmission from Bat-SL-CoV-2 and Pangolin-CoV. Here, we provide evidence for recombination event between Bat-SL-CoV-2 and Pangolin-CoV that resulted in the emergence of SARS-CoV-2. Nevertheless, the role of mutations should be noted as another influencing factor in the continuing evolution and resurgence of novel SARS-CoV-2 variants.

8.
Res Vet Sci ; 134: 171-180, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33387757

RESUMO

Emerging viral diseases include pathogens that can threaten the health of the Canadian swineherd. Anelloviruses and Circoviruses comprise of pathogens with veterinary significance. The aim of this study was to determine the genomic organization and phylogenetic relationships of Torque teno sus virus (TTsusV) and Porcine circovirus (PCV) from Canadian pig samples. Fecal and tissue specimens were collected during the winter, spring and summer of 2018. We utilized either virus- or genus-specific PCR assays to characterize the occurrence and genetic diversity of TTsusV and PCV in Canadian pigs. Pairwise comparison of all partial sequences and identity calculation was performed using MAFFT algorithm implemented in Sequence Demarcation Tool (SDT). The obtained full-length sequences were aligned using ClustalW, and phylogeny was inferred using a Maximum likelihood (ML) method by Geneious software. The PCR detection results revealed that the overall positive rate of TTsusV type-1 and type-2 was 45.6% and 32.6%, respectively. The TTsusV isolate MK990454 from Canada clustered in the subtype TTsusV1b, while the TTsusV isolate MK872392 fell in the subtype TTsusV2c, and all showed similarity to known American and Chinese isolates. In addition, our screening PCR showed that 2.7% of stool samples were positive for PCV1. Phylogenetic analysis using the full-length sequence demonstrated that PCV1 (MK872393) isolated from Quebec clustered with other Chinese PCV1 strains. Despite the far geographical distance between Canada and China, the close similarity between Canadian and Chinese TTsusV1 and 2, and PCV1 sequences may be explained by a considerable amount of pig trade between these two nations.


Assuntos
Circovirus/genética , Biologia Computacional , Suínos/virologia , Torque teno virus/genética , Anelloviridae/genética , Animais , Canadá , China , Genômica , Filogenia , Reação em Cadeia da Polimerase/veterinária
9.
Acta Trop ; 213: 105734, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159902

RESUMO

Several mosquito-borne viruses (mobovirus) cause infections in Canada. Ecological data on mosquito species and host range in Canada remains elusive. The main aim of the current study is to determine the host range and molecular systematics of mosquito species in Canada. Mosquitoes were collected using BG-Sentinel traps and aspirators at 10 trapping sites in Canada during 2018 and 2019. Mosquitoes collected were identified via morphology and molecular techniques. Mosquito sequences were aligned by MUSCLE algorithm and evolutionary systematics were drawn using MEGA and SDT software. Moreover, the source of blood meals was identified using a DNA barcoding technique. A total of 5,708 female mosquitoes over 34 different taxa were collected. DNA barcodes and evolutionary tree analysis confirmed the identification of mosquito species in Canada. Of the total collected samples, 201 specimens were blood-fed female mosquitoes in 20 different taxa. Four mosquito species represented about half (51.47%) of all collected blood-fed specimens: Aede cinereus (39 specimens, 19.11%), Aedes triseriatus (23, 11.27%), Culex pipiens (22, 10.78%), and Anopheles punctipennis (21, 10.29%). The most common blood meal sources were humans (49 mosquito specimens, 24% of all blood-fed mosquito specimen), pigs (44, 21.5%), American red squirrels (28, 13.7%), white-tailed deers (28, 13.7%), and American crows (16, 7.8%). Here, we present the first analysis of the host-feeding preference of different mosquito species in Canada via molecular techniques. Our results on mosquito distribution and behavior will aid in the development of effective mitigation and control strategies to prevent or reduce human/animal health issues in regards to moboviruses.


Assuntos
Culicidae/fisiologia , Especificidade de Hospedeiro , Aedes/classificação , Aedes/genética , Aedes/fisiologia , Algoritmos , Animais , Sangue , Canadá , Culex/classificação , Culex/genética , Culex/fisiologia , Culicidae/classificação , Culicidae/genética , Cervos , Ecossistema , Comportamento Alimentar , Feminino , Humanos , Filogenia , Suínos
10.
Viruses ; 12(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339336

RESUMO

Using molecular techniques and bioinformatics tools, we studied the vector-host interactions and the molecular epidemiology of West Nile virus (WNV) in western Iran. Mosquitoes were collected during 2017 and 2018. DNA typing assays were used to study vector-host interactions. Mosquitoes were screened by RT-PCR for the genomes of five virus families. WNV-positive samples were fully sequenced and evolutionary tree and molecular architecture were constructed by Geneious software and SWISS-MODEL workspace, respectively. A total of 5028 mosquito specimens were collected and identified. The most prevalent species was Culex (Cx.) pipiens complex (57.3%). Analysis of the blood-feeding preferences of blood-fed mosquitoes revealed six mammalian and one bird species as hosts. One mosquito pool containing non-blood-fed Cx. theileri and one blood-fed Culex pipiens pipiens (Cpp.) biotype pipiens were positive for WNV. A phylogram indicated that the obtained WNV sequences belonged to lineage 2, subclade 2 g. Several amino acid substitutions suspected as virulence markers were observed in the Iranian WNV strains. The three-dimensional structural homology model of the E-protein identified hot spot domains known to facilitate virus invasion and neurotropism. The recent detection of WNV lineage 2 in mosquitoes from several regions of Iran in consecutive years suggests that the virus is established in the country.


Assuntos
Vetores de Doenças , Interações Hospedeiro-Patógeno , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Sequência de Aminoácidos , Animais , Evolução Molecular , Genoma Viral , Genômica/métodos , Geografia Médica , Humanos , Irã (Geográfico)/epidemiologia , Mosquitos Vetores/virologia , Filogenia , Dinâmica Populacional , Prevalência , Conformação Proteica , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Virulência , Fatores de Virulência , Sequenciamento Completo do Genoma
11.
Heliyon ; 6(8): e04480, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775741

RESUMO

Culicidae mosquitoes are main vectors of arboviruses that cause arboviral diseases in humans. Studies on fauna, ecology, biology, resting behaviors of Culicidae mosquitoes are important and greatly impacts the control of arboviral diseases that are transmitted by vectors. The aim of the present study was to determine fauna of mosquitoes (Diptera: Culicidae) based on morphological and molecular (genomic) identification and their habitats in Lorestan province, Western Iran. Meanwhile mosquito samples were examined for arbovirus infection. Culicidae mosquitoes were caught in 2015 and 2016 from human homes, animal dwellings, storehouses and pit shelters in Lorestan province, Western Iran, using an oral aspirator (hand catch), total catch, human and animal bait and light trap methods. The samples were identified on the genus and species. Six species of Culex and eight species of Anopheles were caught. One complex species (Cx. pipiens complex) and a hybrid between Cx. pipiens pipiens biotype pipiens and Cx. pipiens pipiens biotype molestus were identified. Among all of the trapped mosquitoes (4211), 94.68% were from genus Culex mosquitoes (3987), which indicate that this genus is the dominant in Lorestan province, Western Iran. Anopheles comprised of 201 individuals out of the total catch. Arboviruses were not detected in these samples.

12.
J Med Entomol ; 57(4): 1025-1031, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32052030

RESUMO

Given current and projected changes in the climate, the composition of mosquito species is predicted to shift geographically with implications for the transmission dynamics of vector-borne pathogens. Many mosquito species are rarely collected in Canada and their history is poorly understood; thus assessing their potential role as vectors for pathogenesis is difficult. Mosquitoes were collected from four trapping sites in Quebec Province, Canada, from June to September during 2018 and 2019 using BG sentinel traps. From all morphologically identified female mosquitoes, at least one specimen was selected for identification confirmation using the DNA-barcoding technique. Sequences were subjected to alignment and a Neighbor-Joining (NJ) tree was created using Geneious software. In total, 2,752 female mosquitoes belonging to 20 species over five genera: including Aedes (Ae.), Anopheles (An.), Culex (Cx.), Culiseta (Cu.), Coquillettidia (Cq.) were collected. The predominant mosquito was found to be Ae. cinereus. The highest number of mosquito species was captured in July, followed by August, September, and then June. Five genera were characterized by a distinctive set of cytochrome oxidase I (COI) sequences that formed well-supported clusters in the NJ-tree. The presence of Ae.japonicus in Quebec provides an initial look at the distribution of mosquito species in eastern Canada, which may put Canadians at risk of a wider range of arboviruses.


Assuntos
Biodiversidade , Culicidae , Animais , Evolução Molecular , Feminino , Mosquitos Vetores , Filogenia , Densidade Demográfica , Quebeque
14.
Parasit Vectors ; 11(1): 669, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587194

RESUMO

BACKGROUND: Different mosquito-borne pathogens are circulating in Iran including Sindbis virus, West Nile virus, filarioid worms and malaria parasites. However, the local transmission cycles of these pathogenic agents are poorly understood, especially because ecological data on vector species are scarce and there is limited knowledge about the host range; this understanding could help to direct species-specific vector control measurements or to prioritize research. METHODS: In the summers of 2015 and 2016, blood-fed mosquitoes were collected at 13 trapping sites on the coast of the Caspian Sea in northern Iran and at an additional trapping site in western Iran. Mosquitoes were generally collected with either a Biogents Sentinel trap or a Heavy Duty Encephalitis Vector Survey trap installed outside. A handheld aspirator was used at the trapping site in western Iran, in addition to a few samplings around the other trapping sites. On average, eight trapping periods were conducted per trapping site. The sources of blood meals were identified using a DNA barcoding approach targeting the cytochrome b or 16S rRNA gene fragment. RESULTS: The source of blood meals for 580 blood-fed mosquito specimens of 20 different taxa were determined, resulting in the identification of 13 different host species (9 mammals including humans, 3 birds and 1 reptile), whereby no mixed blood meals were detected. Five mosquito species represented more than 85.8% of all collected blood-fed specimens: Culex pipiens pipiens form pipiens (305 specimens, 55.7% of all mosquito specimens), Cx. theileri (60, 10.9%), Cx. sitiens (51, 9.3%), Cx. perexiguus (29, 5.3%) and Anopheles superpictus (25, 4.6%). The most commonly detected hosts of the four most abundant mosquito species were humans (Homo sapiens; 224 mosquito specimens, 40.9% of all mosquito specimens), cattle (Bos taurus; 171, 31.2%) and ducks (Anas spp.; 75, 13.7%). These four mosquito species had similar host-feeding patterns. The only exceptions were a relatively high proportion of birds for Cx. pipiens pipiens f. pipiens (23.2% of detected blood meal sources) and a high proportion of non-human mammals for Cx. theileri (73.4%). Trapping month, surrounding area, or trapping method had no statistically significant impact on the observed host-feeding patterns of Cx. pipiens pipiens f. pipiens. CONCLUSIONS: Due to the diverse and overlapping host-feeding patterns, several mosquito species must be considered as potential enzootic and bridge vectors for diverse mosquito-borne pathogens in Iran. Most species can potentially transmit pathogens between mammals as well as between mammals and birds, which might be the result of a similar host selection or a high dependence on the host availability.


Assuntos
Culex/fisiologia , Mosquitos Vetores/fisiologia , Animais , Aves , Culex/classificação , Culex/genética , Comportamento Alimentar , Feminino , Humanos , Mordeduras e Picadas de Insetos/sangue , Mordeduras e Picadas de Insetos/parasitologia , Irã (Geográfico) , Mamíferos , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Répteis
15.
PLoS One ; 13(11): e0207308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427929

RESUMO

Identifying mosquito species is a fundamental step in risk assessment and implementation of preventative strategies. Moreover, Culex pipiens is the most widespread mosquito vector in several regions of Iran and is the main vector for transmission of West Nile virus (WNV). Mosquitoes were collected at 14 sites in northern regions of Iran in 2015 and 2016. A subset of mosquito specimens was selected for identification confirmation using a DNA-barcoding technique. Construction of a phylogenetic tree showed clustering of mosquito sequences into three main genera: Aedes, Anopheles and Culex with individuals of a single species clustered closely together, regardless of where and when they were collected. Cx. pipiens complex and Cx. torrentium were identified and differentiated using multiplex real-time PCR targeting the gene locus for acetylcholinesterase 2 (ace2) to discriminate between Cx. pipiens pipiens and Cx. torrentium. The CQ11 microsatellite locus was used for discrimination between Cpp. biotypes. The predominant mosquito species in investigated regions were Cx. pipiens pipiens biotype pipiens, but we also detected Culex pipiens pipiens biotype molestus and hybrids of the two pipiens biotypes, as well as Cx. torrentium. The results of this study represent the first certain evidence of the presence of Cx. pipiens pipiens biotype molestus and hybrids between pipiens and molestus forms, and Cx. torrentium in Iran through a molecular identification approach. This report of a potentially important bridge vector for WNV might have key influence in the risk projections for WNV in Iran.


Assuntos
Culex/classificação , Culicidae/classificação , Código de Barras de DNA Taxonômico/métodos , Animais , Culex/genética , Culicidae/genética , Feminino , Irã (Geográfico) , Reação em Cadeia da Polimerase Multiplex/métodos , Filogenia , Análise de Sequência de DNA/métodos
16.
Heliyon ; 3(11): e00439, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29159319

RESUMO

Crimean-Congo Hemorrhagic Fever (CCHF) is a tick-borne viral disease that is transmitted by numerous species of ticks, which serve both as a reservoir and vector of CCHF virus (CCHFV). Molecular and serological tests were undertaken on hard ticks (Ixodidae spp.) and samples from livestock were collected in 2015 from Chabahar County in Southeast Iran. Using RT-PCR, the ticks were tested for the presence of CCHFV. In addition, seven livestock were serologically tested for the presence of IgG antibodies using an ELISA test. IgG antibodies against CCHFV were detected in one of 7 of the livestock that were tested. In total, 49 ticks including five species: Rhipicephalus sanguineus, Hyalomma anatolicum, Hy. asiaticum, Hy. dromedarii and Hy. marginatum with a prevalence of 46.9%, 32.7%, 4.1%, 4.1% and 2.1% respectively were identified. CCHFV was detected in three ticks among 49 collected ticks. The ticks infected with CCHFV belonged to the genus Hyalomma and Rhipicephalus. Phylogenetic analysis demonstrated that two sequences clustered in clade IV (Asia-1) and one sequence was located within clade IV (Asia-2). Most of the animal and human CCHF cases of the country are reported from Sistan and Baluchistan provinces. Regular monitoring programs in the tick population and livestock are needed in the future.

17.
Infect Genet Evol ; 55: 260-268, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28943405

RESUMO

Thanks to recent advances in random amplification technologies, metagenomic surveillance expanded the number of novel, often unclassified viruses within the family Rhabdoviridae. Using a vector-enabled metagenomic (VEM) tool, we identified a novel rhabdovirus in Aedes cantans mosquitoes collected from Germany provisionally named Ohlsdorf virus (OHSDV). The OHSDV genome encodes the canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORF in the P gene. Sequence analysis indicated that OHSDV exhibits a similar genome organization and characteristics compared to other mosquito-associated rhabdoviruses (Riverside virus, Tongilchon virus and North Creek virus). Complete L protein based phylogeny revealed that all four viruses share a common ancestor and form a deeply rooted and divergent monophyletic group within the dimarhabdovirus supergroup and define a new genus, tentatively named Ohlsdorfvirus. Although the Ohlsdorfvirus clade is basal within the dimarhabdovirus supergroup phylogeny that includes genera of arthropod-borne rhabdoviruses, it remains unknown if viruses in the proposed new genus are vector-borne pathogens. The observed spatiotemporal distribution in mosquitoes suggests that members of the proposed genus Ohlsdorfvirus are geographically restricted/separated. These findings increase the current knowledge of the genetic diversity, classification and evolution of this virus family. Further studies are needed to determine the host range, transmission route and the evolutionary relationships of these mosquito-associated viruses with those infecting vertebrates.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Variação Genética , Genoma Viral , Metagenoma , Metagenômica/métodos , Fases de Leitura Aberta , Filogenia , Filogeografia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
18.
Trop Med Int Health ; 22(10): 1343-1349, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28746985

RESUMO

OBJECTIVE: Screening of mosquitoes for viruses is an important forecasting tool for emerging and re-emerging arboviruses. Iran has been known to harbour medically important arboviruses such as West Nile virus (WNV) and dengue virus (DENV) based on seroepidemiological data. However, there are no data about the potential mosquito vectors for arboviruses in Iran. This study was performed to provide mosquito and arbovirus data from Iran. MATERIALS AND METHODS: A total of 32 317 mosquitos were collected at 16 sites in five provinces of Iran in 2015 and 2016. RT-PCR for detection of flaviviruses was performed. The PCR amplicons were sequenced, and 109 WNV sequences, including one obtained in this study, were used for phylogenetic analyses. RESULTS: The 32 317 mosquito specimens belonging to 25 species were morphologically distinguished and distributed into 1222 pools. Culex pipiens s.l. comprised 56.429%. One mosquito pool (0.08%), containing 46 unfed Cx. pipiens pipiens form pipiens (Cpp) captured in August 2015, was positive for flavivirus RNA. Subsequent sequencing and phylogenetic analyses revealed that the detected Iranian WNV strain belongs to lineage 2 and clusters with a strain recently detected in humans. No flaviviruses other than WNV were detected in the mosquito pools. CONCLUSION: Cpp could be a vector for WNV in Iran. Our findings indicate recent circulation of WNV lineage-2 strain in Iran and provide a solid base for more targeted arbovirus surveillance programs.


Assuntos
Culex/virologia , Insetos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Humanos , Irã (Geográfico) , Reação em Cadeia da Polimerase
19.
Virusdisease ; 28(1): 50-53, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28466055

RESUMO

An on-going surveillance program on Crimean-Congo haemorrhagic fever virus (CCHFV) in Iran has been launched since 2000. An outbreak of CCHF occurred in northern Iran between June and July 2015. Three cases were involved in this outbreak. One patient died after admission to hospital, and the others were treated successfully. Phylogenetic analysis showed that three sequences obtained from Iranian patients grouped within clade IV (Asia-1), clade V (Europe) and clade VI (Greece). The partial sequence of the strain Noshahr59 (KT588642) showed the highest similarity with other strains isolated from Russia, Kosovo and Turkey (Clade V, Europe). The genome sequence of the strain Chalous65 (KT588640) showed 100% homology to the strain AP29 isolated from Greece (DQ211638). The genome sequence of the strain Noshahr43 (KT588641) showed 88% similarity to the Pakistani and previously reported Iranian strains (AF527810, AJ538198, AY366379 and AY366373). These data support previous studies, which showed a distinct similarity between Iranian S segments of CCHFV strains with other strains within clade IV (Asia-1) and clade V (Europe). In addition, clade VI was detected for the first time in Iran. Moreover, strain Chalous65 with similar genetic characteristics to strain AP29 from Greece was isolated from a fatal human case.

20.
J Vector Borne Dis ; 54(4): 353-357, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29460866

RESUMO

BACKGROUND & OBJECTIVES: Crimean-Congo haemorrhagic fever virus (CCHFV) causes severe disease with fatality rate of 30%. The virus is transmitted to humans through the bite of an infected tick, direct contact with the products of infected livestock as well as nosocomially. The disease occurs sporadically throughout many of African, Asian and European countries. Different species of ticks serve either as vector or reservoir for CCHFV. This study was aimed to determine the prevalence of CCHFV in hard ticks (Ixodidae) in the Golestan Province of Iran. METHODS: A molecular survey was conducted on hard ticks (Ixodidae) isolated from six counties in Golestan Province, north of Iran during 2014-15. The ticks were identified using morphological characteristics and presence of CCHFV RNA was detected using RT-PCR. RESULTS: Data revealed the presence of CCHFV in 5.3% of the ticks selected for screening. The infected ticks belonged to Hyalomma dromedarii, Hy. anatolicum, Hy. marginatum and Rhipicephalus sanguineus species. INTERPRETATION & CONCLUSION: The study demonstrated that Hyalomma ticks are the main vectors of CCHFV in Golestan Province. Thus, preventive strategies such as using acaricides and repellents in order to avoid contact with Hyalomma ticks are proposed.


Assuntos
Reservatórios de Doenças/virologia , Vetores de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Ixodidae/virologia , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/prevenção & controle , Febre Hemorrágica da Crimeia/virologia , Humanos , Irã (Geográfico)/epidemiologia , Ixodidae/classificação , Filogenia , Prevalência , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA