Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1333286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606070

RESUMO

Citrus fruits, revered for their nutritional value, face significant threats from diseases like citrus canker, particularly impacting global citrus cultivation, notably in Pakistan. This study delves into the critical role of NPR1-like genes, the true receptors for salicylic acid (SA), in the defense mechanisms of citrus against Xanthomonas axonopodis pv. citri (Xcc). By conducting a comprehensive genome-wide analysis and phylogenetic study, the evolutionary dynamics of Citrus limon genes across diverse citrus cultivars are elucidated. Structural predictions unveil conserved domains, such as the BTB domain and ankyrin repeat domains, crucial for the defense mechanism. Motif analysis reveals essential conserved patterns, while cis-regulatory elements indicate their involvement in transcription, growth, response to phytohormones, and stress. The predominantly cytoplasmic and nuclear localization of NPR1-like genes underscores their pivotal role in conferring resistance to various citrus species. Analysis of the Ks/Ka ratio indicates a purifying selection of NPR1-like genes, emphasizing their importance in different species. Synteny and chromosomal mapping provide insights into duplication events and orthologous links among citrus species. Notably, Xac infection stimulates the expression of NPR1-like genes, revealing their responsiveness to pathogenic challenges. Interestingly, qRT-PCR profiling post-Xac infection reveals cultivar-specific alterations in expression within susceptible and resistant citrus varieties. Beyond genetic factors, physiological parameters like peroxidase, total soluble protein, and secondary metabolites respond to SA-dependent PR genes, influencing plant characteristics. Examining the impact of defense genes (NPR1) and plant characteristics on disease resistance in citrus, this study marks the inaugural investigation into the correlation between NPR1-associated genes and various plant traits in both susceptible and resistant citrus varieties to citrus bacterial canker.

2.
Heliyon ; 10(1): e22960, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163208

RESUMO

Citrus is a remarkable fruit crop, extremely sensitive to flooding conditions, which frequently trigger hypoxia stress and cause severe damage to citrus plants. Silicon nanoparticles (SiNPs) are beneficial and have the potential to overcome this problem. Therefore, the present study aimed to investigate the effect of silicon nanoparticles to overcome hypoxia stress through modulating antioxidant enzyme activity and carbohydrate metabolism. Three citrus rootstocks (Carrizo citrange, Roubidoux, and Rich 16-6) were exposed to flooding (with and without oxygen) through different SiNP treatments via foliar and root zone. SiNPs applied treatment plants showed a significant increase in photosynthesis, leaf greenness, antioxidant enzymes, and carbohydrate metabolic activities, besides the higher accumulation of proline and glycine betaine. The rate of lipid peroxidation was drastically higher in flooded plants; however, SiNPs application reduced it significantly, ultimately reducing oxidative damage. Overall, Rich16-6 rootstock showed good performance via root zone application compared to other rootstocks, possibly due to genotypical variation in silicon uptake. Our outcomes demonstrate that SiNPs significantly affect plant growth during hypoxia stress conditions, and their use is an optimal strategy to overcome this issue. This study laid the foundation for future research to use at the commercial level to overcome hypoxia stress and a potential platform for future research.

3.
Sci Rep ; 13(1): 19686, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952078

RESUMO

Glycolate oxidase (GLO) is an FMN-containing enzyme localized in peroxisomes and performs in various molecular and biochemical mechanisms. It is a key player in plant glycolate and glyoxylate accumulation pathways. The role of GLO in disease and stress resistance is well-documented in various plant species. Although studies have been conducted regarding the role of GLO genes from spinach on a microbial level, the direct response of GLO genes to various stresses in short-season and leafy plants like lettuce has not been published yet. The genome of Lactuca sativa cultivar 'Salinas' (v8) was used to identify GLO gene members in lettuce by performing various computational analysis. Dual synteny, protein-protein interactions, and targeted miRNA analyses were conducted to understand the function of GLO genes. The identified GLO genes showed further clustering into two groups i.e., glycolate oxidase (GOX) and hydroxyacid oxidase (HAOX). Genes were observed to be distributed unevenly on three chromosomes, and syntenic analysis revealed that segmental duplication was prevalent. Thus, it might be the main reason for GLO gene diversity in lettuce. Almost all LsGLO genes showed syntenic blocks in respective plant genomes under study. Protein-protein interactions of LsGLO genes revealed various functional enrichments, mainly photorespiration, and lactate oxidation, and among biological processes oxidative photosynthetic carbon pathway was highly significant. Results of in-depth analyses disclosed the interaction of GLO genes with other members of the glycolate pathway and the activity of GLO genes in various organs and developmental stages in lettuce. The extensive genome evaluation of GLO gene family in garden lettuce is believed to be a reference for cloning and studying functional analyses of GLO genes and characterizing other members of glycolate/glyoxylate biosynthesis pathway in various plant species.


Assuntos
Jardins , Lactuca , Lactuca/genética , Lactuca/metabolismo , Plantas/metabolismo , Glicolatos/metabolismo , Glioxilatos
4.
Front Plant Sci ; 14: 1269995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954992

RESUMO

Rice constitutes a foundational cereal and plays a vital role in the culinary sector. However, the detriments of abiotic stress on rice quality and productivity are noteworthy. Carotenoid cleavage oxygenases (CCO) hold vital importance as they enable the particular breakdown of carotenoids and significantly contribute towards the growth and response to abiotic stress in rice. Due to the insufficient information regarding rice CCOs and their potential role in abiotic stress, their utilization in stress-resistant genetic breeding remains limited. The current research identified 16 CCO genes within the Oryza sativa japonica group. These OsCCO genes can be bifurcated into three categories based on their conserved sequences: NCEDs (9-Cis-epoxycarotenoid dioxygenases), CCDs (Carotenoid cleavage dioxygenases) and CCD-like (Carotenoid cleavage dioxygenases-like). Conserved motifs were found in the OsCCO gene sequence via MEME analysis and multiple sequence alignment. Stress-related cis-elements were detected in the promoter regions of OsCCOs genes, indicating their involvement in stress response. Additionally, the promoters of these genes had various components related to plant light, development, and hormone responsiveness, suggesting they may be responsive to plant hormones and involved in developmental processes. MicroRNAs play a pivotal role in the regulation of these 16 genes, underscoring their significance in rice gene regulation. Transcriptome data analysis suggests a tissue-specific expression pattern for rice CCOs. Only OsNCED6 and OsNCED10 significantly up-regulated during salt stress, as per RNA seq analyses. CCD7 and CCD8 levels were also higher in the CCD group during the inflorescence growth stage. This provides insight into the function of rice CCOs in abiotic stress response and identifies possible genes that could be beneficial for stress-resistant breeding.

5.
J Xenobiot ; 13(4): 572-603, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873814

RESUMO

Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.

6.
BMC Genomics ; 24(1): 603, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821819

RESUMO

Zinc finger-homeodomain (ZHD) proteins are mostly expressed in plants and are involved in proper growth and development and minimizing biotic and abiotic stress. A recent study identified and characterized the ZHD gene family in chilli (Capsicum annuum L.) to determine their probable molecular function. ZHD genes with various physicochemical characteristics were discovered on twelve chromosomes in chilli. We separated ZHD proteins into two major groups using sequence alignment and phylogenetic analysis. These groups differ in gene structure, motif distribution, and a conserved ZHD and micro-zinc finger ZF domain. The majority of the CaZHDs genes are preserved, early duplication occurred recently, and significant pure selection took place throughout evolution, according to evolutionary study. According to expression profiling, the genes were found to be equally expressed in tissues above the ground, contribute to plant growth and development and provide tolerance to biotic and abiotic stress. This in silico analysis, taken as a whole, hypothesized that these genes perform distinct roles in molecular and phytohormone signaling processes, which may serve as a foundation for subsequent research into the roles of these genes in other crops.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Filogenia , Proteínas de Ligação a DNA/genética , Dedos de Zinco/genética , Genes Homeobox , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Genes (Basel) ; 14(8)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37628578

RESUMO

Polyamines (PAs) contribute to diverse plant processes, environmental interaction, and stress responses. In citrus, the mechanism underlying the biosynthesis of polyamines is poorly understood. The present study aims to identify the biosynthesis of PA gene family members in satsuma mandarin (Citrus unshiu) and investigate their response against various stresses. The identified biosynthesis of PA genes in C. unshiu showed clustering in six groups, i.e., SPMS, SPDS, ACL5, ADC, ODC, and SAMDC. Syntenic analysis revealed that segmental duplication was prevalent among the biosynthesis of PA genes compared to tandem duplication. Thus, it might be the main reason for diversity in the gene family in C. unshiu. Almost all biosynthesis of PA gene family members in C. unshiu showed syntenic blocks in the genome of Arabidopsis, Citrus sinensis, Poncirus trifoliata, and Citrus reticulata. Analysis of Cis-regulatory elements (CREs) indicated the occurrence of hormones, light, defense, and environmental stress responses as well as the development and other plant mechanisms-related elements in the upstream sequence of the biosynthesis of PA genes. Expression profiling revealed that the biosynthesis of PA gene expression modulates in different organs during various developmental stages and stress in C. unshiu. This information will provide a deep understanding of genomic information and its expression in multiple tissues to better understand its potential application in functional genomics.


Assuntos
Arabidopsis , Citrus sinensis , Citrus , Citrus/genética , Genômica , Poliaminas
8.
Life (Basel) ; 13(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374143

RESUMO

In years with unfavorable weather, winter frost during the blossoming season can play a significant role in reducing fruit yield and impacting the profitability of cultivation. The mango Naomi cultivar Mangifera indica L. has a low canopy that is severely affected by the effects of frost stress. As a result of the canopy being exposed to physiological problems, vegetative development is significantly inhibited. The current investigation aimed to study the influence of spraying nitric oxide and fogging spray systems on Naomi mango trees grafted on 'Succary' rootstock under frost stress conditions. The treatments were as follows: nitric oxide (NO) 50 and 100 µM, fogging spray system, and control. In comparison to the control, the use of nitric oxide and a fogging system significantly improved the leaf area, photosynthesis pigments of the leaf, the membrane stability index, yield, and physical and chemical characteristics of the Naomi mango cultivar. For instance, the application of 50 µM NO, 100 µM NO, and the fogging spray system resulted in an increase in yield by 41.32, 106.12, and 121.43% during the 2020 season, and by 39.37, 101.30, and 124.68% during the 2021 season compared to the control, respectively. The fogging spray system and highest level of NO decreased electrolyte leakage, proline content, total phenolic content, catalase (CAT), peroxidases (POX), and polyphenol oxidase (PPO) enzyme activities in leaves. Furthermore, the number of damaged leaves per shoot was significantly reduced after the application of fogging spray systems and nitric oxide in comparison to the control. Regarding vegetative growth, our results indicated that the fogging spray system and spraying nitric oxide at 100 µM enhanced the leaf surface area compared to the control and other treatments. A similar trend was noticed regarding yield and fruit quality, whereas the best values were obtained when the fogging spray system using nitric oxide was sprayed at a concentration of 100 µM. The application of fogging spray systems and nitric oxide can improve the production and fruit quality of Naomi mango trees by reducing the effects of adverse frost stress conditions.

9.
Genes (Basel) ; 13(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421787

RESUMO

Zinc finger-homeodomain proteins are amongst the most prominent transcription factors (TFs) involved in biological processes, such as growth, development, and morphogenesis, and assist plants in alleviating the adverse effects of abiotic and biotic stresses. In the present study, genome-wide identification and expression analyses of the maize ZHD gene family were conducted. A total of 21 ZHD genes with different physicochemical properties were found distributed on nine chromosomes in maize. Through sequence alignment and phylogenetic analysis, we divided ZHD proteins into eight groups that have variations in gene structure, motif distribution, and a conserved ZF domain. Synteny analysis indicated duplication in four pairs of genes and the presence of orthologues of maize in monocots. Ka/Ks ratios suggested that strong pure selection occurred during evolution. Expression profiling revealed that the genes are evenly expressed in different tissues. Most of the genes were found to make a contribution to abiotic stress response, plant growth, and development. Overall, the evolutionary research on exons and introns, motif distributions, and cis-acting regions suggests that these genes play distinct roles in biological processes which may provide a basis for further study of these genes' functions in other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Família Multigênica , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Sci Rep ; 12(1): 16568, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195624

RESUMO

Climate change, pesticide resistance, and the need for developing new plant varieties have galvanized biotechnologists to find new solutions in order to produce transgenic plants. Over the last decade scientists are working on green metallic nanoparticles to develop DNA delivery systems for plants. In the current study, green Iron nanoparticles were synthesized using leaf extract of Camellia sinensis (green tea) and Iron Chloride (FeCl3), the characterization and Confirmation was done using UV-VIS Spectroscopy, FTIR, SEM, and TEM. Using these nanoparticles, a novel method of gene transformation in okra plants was developed, with a combination of different Magnetofection factors. Maximum gene transformation efficiency was observed at the DNA to Iron-nanoparticles ratio of 1:20, by rotation of mixture (Plasmid DNA, Iron-nanoparticles, and seed embryo) at 800 rpm for 5 h. Using this approach, the transformation of the GFP (green fluorescent protein) gene was successfully carried out in Abelmoschus esculentus (Okra plant). The DNA transformation was confirmed by observing the expression of transgene GFP via Laser Scanning Confocal Microscope (LSCM) and PCR. This method is highly economical, adaptable, genotype independent, eco-friendly, and time-saving as well. We infer that this approach can be a potential solution to combat the yield and immunity challenges of plants against pathogens.


Assuntos
Abelmoschus , Nanopartículas Metálicas , Nanopartículas , Praguicidas , Abelmoschus/química , Cloretos , Química Verde/métodos , Proteínas de Fluorescência Verde , Ferro , Nanopartículas Metálicas/química , Extratos Vegetais/química , Chá/química
11.
Biomed Res Int ; 2022: 1581714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246983

RESUMO

Relaxin family peptides significantly regulate reproduction, nutrient metabolism, and immune response in mammals. The present study aimed to identify and characterize the relaxin family peptides in cattle and buffalo at the genome level. The genomic and proteomic sequences of cattle, buffalo, goat, sheep, horse, and camel were accessed through the NCBI database, and BLAST was performed. We identified four relaxin peptides genes (RLN3, INSL3, INSL5, and INSL6) in Bos taurus, whereas three relaxin genes (RLN3, INSL3, and INSL6) in Bubalus bubalis. Evolutionary analysis revealed the conserved nature of relaxin family peptides in buffalo and cattle. Physicochemical properties revealed that relaxin proteins were thermostable, hydrophilic, and basic peptides except for INSL5 which was an acidic peptide. Three nonsynonymous mutations (two in RLN3 at positions A16 > T and P29 > A, and one in INSL6 at position R32 > Q) in Bos taurus, whereas two nonsynonymous mutations (one in RLN3 at positions G105 > w and one in INSL3 at position G22 > R) in Bubalus bubalis, were identified. INSL3 had one indel (insertion) at position 55 in Bos taurus. Gene duplication analysis revealed predominantly segmental duplications (INSL5/RLN3 and INSL6/INSL3 gene pairs) that helped expand this gene family, whereas Bubalus bubalis showed primarily tandem duplication (INSL3/RLN3). Our study concluded that relaxin family peptides remained conserved during the evolution, and gene duplications might help to adapt and enrich specific functions like reproduction, nutrient metabolism, and immune response. Further, the nonsynonymous mutations identified potentially affect these functions in buffalo.


Assuntos
Relaxina , Animais , Búfalos/genética , Búfalos/metabolismo , Bovinos/genética , Genômica , Cavalos , Mamíferos , Proteínas/metabolismo , Proteômica , Relaxina/genética , Ovinos
12.
Sci Rep ; 12(1): 9522, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681016

RESUMO

Information regarding the germination and seedling growth behavior of a potential weed species is an important tool to manage weeds without the use of agricultural chemicals that cause harmful effects on human health and the environment. A series of experiments were directed to investigate the influence of different environmental factors (temperature, pH, NaCl, moisture stress, and seed burial depth) on germination and seedling emergence of perennial ryegrass (Lolium perenne L.) under controlled conditions. Results suggested that 25 °C is the optimum temperature for maximum germination (95%) and seedling growth of perennial ryegrass, however, a quick decline was observed at 35 °C. Seed germination was unaffected by pH levels ranging from 5 to 10. The 92% seed germination was recorded where no salt stress was applied and germination was reduced by 87% at 250 mMNaCl concentration. Seed germination was unaffected by osmotic potential ranges from 0 to - 0.4 MPa thereafter declined and completely inhibited at - 0.8 or - 1.0 MPa. No seed emerged at the soil surface or a soil depth of 6 or 7 cm and 90% emergence occurred at 1 cmsoil depth. The germination and seedlings parameters like time to initial germination, mean germination time, time taken to 50% germination and germination index, root and shoot length, and fresh and dry weight of root and shoot are significantly affected with the environmental factors. The information obtained in this study will be helpful to develop better management strategies for germination and the emergence of perennial ryegrass in areas where it has the ability to rapidly colonize.


Assuntos
Lolium , Plântula , Germinação , Humanos , Sementes , Solo
13.
Antioxidants (Basel) ; 11(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35204192

RESUMO

Tomato is an important vegetable that is highly sensitive to drought (DR) stress which impairs the development of tomato seedlings. Recently, melatonin (ME) has emerged as a nontoxic, regulatory biomolecule that regulates plant growth and enhances the DR tolerance mechanism in plants. The present study was conducted to examine the defensive role of ME in photosynthesis, root architecture, and the antioxidant enzymes' activities of tomato seedlings subjected to DR stress. Our results indicated that DR stress strongly suppressed growth and biomass production, inhibited photosynthesis, negatively affected root morphology, and reduced photosynthetic pigments in tomato seedlings. Per contra, soluble sugars, proline, and ROS (reactive oxygen species) were suggested to be improved in seedlings under DR stress. Conversely, ME (100 µM) pretreatment improved the detrimental-effect of DR by restoring chlorophyll content, root architecture, gas exchange parameters and plant growth attributes compared with DR-group only. Moreover, ME supplementation also mitigated the antioxidant enzymes [APX (ascorbate peroxidase), CAT (catalase), DHAR (dehydroascorbate reductase), GST (glutathione S-transferase), GR (glutathione reductase), MDHAR (monodehydroascorbate reductase), POD (peroxidase), and SOD (superoxide dismutase)], non-enzymatic antioxidant [AsA (ascorbate), DHA (dehydroascorbic acid), GSH (glutathione), and GSSG, (oxidized glutathione)] activities, reduced oxidative damage [EL (electrolyte leakage), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and O2•- (superoxide ion)] and osmoregulation (soluble sugars and proline) of tomato seedlings, by regulating gene expression for SOD, CAT, APX, GR, POD, GST, DHAR, and MDHAR. These findings determine that ME pretreatment could efficiently improve the seedlings growth, root characteristics, leaf photosynthesis and antioxidant machinery under DR stress and thereby increasing the seedlings' adaptability to DR stress.

14.
Front Plant Sci ; 13: 1092105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743537

RESUMO

Endophytic bacteria are mainly present in the plant's root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes' interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.

15.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616252

RESUMO

Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease.

16.
Cells ; 10(6)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205352

RESUMO

Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect the root growth, and thereby affecting the overall plant growth, health, and productivity. However, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere, and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts to focus on root-rhizosphere and rhizobacterial interactions under stresses, how roots respond to these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on the underlying mechanisms employed by rhizobacteria for improving root architecture and plant tolerance to abiotic stresses.


Assuntos
Bactérias/crescimento & desenvolvimento , Desenvolvimento Vegetal , Raízes de Plantas , Rizosfera , Estresse Fisiológico , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
17.
Front Plant Sci ; 11: 618873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643333

RESUMO

Flooding induces low oxygen (hypoxia) stress to plants, and this scenario is mounting due to hurricanes followed by heavy rains, especially in subtropical regions. Hypoxia stress results in the reduction of green pigments, gas exchange (stomatal conductance and internal CO2 concentration), and photosynthetic activity in the plant leaves. In addition, hypoxia stress causes oxidative damage by accelerating lipid peroxidation due to the hyperproduction of reactive oxygen species (ROS) in leaf and root tissues. Furthermore, osmolyte accumulation and antioxidant activity increase, whereas micronutrient uptake decreases under hypoxia stress. Plant physiology and development get severely compromised by hypoxia stress. This investigation was, therefore, aimed at appraising the effects of regular silicon (Si) and Si nanoparticles (SiNPs) to mitigate hypoxia stress in muscadine (Muscadinia rotundifolia Michx.) plants. Our results demonstrated that hypoxia stress reduced muscadine plants' growth by limiting the production of root and shoot dry biomass, whereas the root zone application of both Si and SiNP effectively mitigated oxidative and osmotic cell damage. Compared to Si, SiNP yielded better efficiency by improving the activity of enzymatic antioxidants [including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)], non-enzymatic antioxidants [ascorbic acid (AsA) and glutathione contents], and accumulation of organic osmolytes [proline and glycinebetaine (GB)]. SiNP also regulated the nutrient profile of the plants by increasing N, P, K, and Zn contents while limiting Mn and Fe concentration to a less toxic level. A negative correlation between antioxidant activities and lipid peroxidation rates was observed in SiNP-treated plants under hypoxia stress. Conclusively, SiNP-treated plants combat hypoxia more efficiently stress than conventional Si by boosting antioxidant activities, osmoprotectant accumulation, and micronutrient regulation.

18.
Ecotoxicol Environ Saf ; 180: 588-599, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31132554

RESUMO

Past studies have already determined that selenium (Se) is very effective in alleviating cell oxidative damage caused by various abiotic stresses in plants. Past studies have also indicated other physiological pathways by which Se may benefit plants. In order to better understand the full array of potential applications for Se in agriculture, this study investigated the influence of Se on carbohydrate and nitrogen (N) metabolism in potato plants (Solanum tuberosum L. cv. Sante) grown under cadmium (Cd) and/or arsenic (As) toxicity. Potato plants were grown in a growth chamber and fertigated with Hoagland nutrient solution with or without Se (9 µM). After 48-d of growth under Cd (40 µM) and/or As (40 µM) stress, carbohydrate and N metabolism in leaves, roots and stolons were measured. For carbohydrate metabolism, various sugars-i.e., sucrose, starch, glucose, fructose, and total soluble sugar contents (TSSC)-and the activities of enzymes associated with sucrose metabolism and glycolysis-i.e., acid invertase (AI), neutral invertase (NI), sucrose-synthetase (SS), sucrose phosphatesynthetase (SPS), fructokinase (FK), hexokinase (HK), phosphofructokinase (PFK), and pyruvatekinase (PK)-were measured. For N metabolism, NO3-, NO2- and NH4+ contents along with the enzymatic activities of nitrate reductase (NRA), nitrite reductase (NiRA), glutamine-synthetase (GS), and glutamate-synthetase (GOGAT) were measured. Overall, Cd and/or As treatments had reduced plant growth relative to those plants grown without heavy metal toxicity, due to hindered photosynthesis and alterations in N metabolism and glycolysis. Regarding N metabolism, heavy metal toxicity caused a reduction in NO3- and NO2- content and NRA and NiRA enzymatic activity and enhanced NH4+ content and GDH activity in leaves, roots and stolons. Regarding glycolysis, the activity of enzymes of glycolysis-i.e., FK, HK, PFK, and PK-were also reduced. In the C metabolism study, plants combatted Cd and As toxicity naturally by an adaptation mechanism which caused an increase in soluble sugars (fructose, glucose, sucrose) by increasing NI, SS and SSP enzymatic activity. Supplementation with Se in the Cd and/or As treatments in the carbohydrate and N metabolism studies improved plant growth. Selenium supplementation in the Cd and As treatments decreased Cd and/or As content in the plant tissue and alleviating the Cd- and/or As-induced toxicity by enhancing the C-metabolism adaptation mechanism. Applying Se to Cd and As treatments also decreased nitrogen losses by hindering Cd- and As-induced changes in the N-metabolism. Se also limited Cd and As accumulation in the plant tissue by the antagonistic effect between Cd/Se and As/Se in the roots. The results of this study indicate that in the presence of Cd and/or As. soil toxicity, Se may be a powerful tool for promoting plant growth.


Assuntos
Arsênio/toxicidade , Cádmio/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Nitrogênio/metabolismo , Selênio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Solanum tuberosum/metabolismo , Estresse Fisiológico , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA